Contractile and non-contractile tissue volume and distribution in ankle muscles of young and older adults

Christopher J. Hasson a,*, Jane A. Kent-Braun b, Graham E. Caldwell a
*a Biomechanics Laboratory, Department of Kinesiology, University of Massachusetts Amherst, USA
b Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts Amherst, USA

A R T I C L E I N F O
Article history:
Accepted 26 May 2011

Keywords:
Dorsiflexor
Plantar flexor
Volume
Aging
MRI
Contractile tissue
Non-contractile tissue

A B S T R A C T
Magnetic resonance imaging (MRI) enables accurate in vivo quantification of human muscle volumes, which can be used to estimate subject-specific muscle force capabilities. An important consideration is the amount of contractile and non-contractile tissue in the muscle compartment, which will influence force capability. We quantified age-related differences in the proportion and distribution of contractile and non-contractile tissue in the dorsiflexor and plantar flexor (soleus, and medial and lateral heads of gastrocnemius) muscles, and examined how well these volumes can be estimated from single MRI cross-sections. Axial MRIs of the left leg for 12 young (mean age 27 years) and 12 older (72 years) healthy, active adults were used to compute muscle volumes. Contractile tissue distribution along the leg was characterized by mathematical functions to allow volume prediction from single-slice cross-sectional area (CSA) measurements. Compared to young, older adults had less contractile volume and a greater proportion of non-contractile tissue. In both age groups the proportion of non-contractile tissue increased distally, with the smallest proportion near the maximum compartment CSA. A single CSA measurement predicted contractile volume with 8–11% error, with older adults in the higher end of this range. Using multiple slices improved volume estimates by roughly 50%, with average errors of about 3–4%. These results demonstrate significant age-related differences in non-contractile tissue for the dorsiflexor- and plantar-flexor muscles. Although estimates of contractile volume can be obtained from single CSA measurements, multiple slices are needed for increased accuracy due to inter-individual variations in muscle volume and composition.

1. Introduction

In modeling the musculoskeletal system, researchers typically scale muscular parameters to that of an average young male (Kuo and Zajac, 1993; van Soest and Bobbert, 1993; Anderson and Pandy, 2001), despite large variation in muscle morphology and physiology between subjects (Lexell and Taylor, 1989). Failure to account for these subject-specific differences can compromise the accuracy of musculoskeletal models (Scovil and Ronsky, 2006).

An important parameter for individual muscles is maximal isometric force (P0), which cannot be measured experimentally due to the redundancy of the musculoskeletal system (Yamaguchi et al., 1995). An alternative is to estimate P0 from individual muscle volumes (Caldwell and Chapman, 1991), which can be measured accurately and reliably in vivo using magnetic resonance imaging (MRI) (Mitsiopoulos et al., 1998).

A contiguous series of axial MR images is considered the gold standard for muscle volume measurement (Narici et al., 1992), although this requires significant analysis time (Mitsiopoulos et al., 1998). However, Morse et al. (2007) calculated quadriceps volume in young adults from a single axial MRI image, thereby reducing analysis time considerably. They reported an error of ~10% compared to a full image set, but it is unclear how well a single scan will work for muscles with different morphologies and populations such as the elderly. Many older adults have sarcopenia, a prominent reduction in contractile tissue (Roubenoff and Hughes, 2000). Concomitantly with increased age, there is a two- to six-fold muscle-specific increase in the percentage of non-contractile tissue (Forsberg et al., 1991; Overend et al., 1992; Jubrias et al., 1997; Kent-Braun et al., 2000). However, these studies have assessed non-contractile tissue at only a few locations, so little is known about non-contractile tissue distribution. Age-related changes in the proportion and/or distribution of contractile and non-contractile tissue will affect volume estimates from single images, but the size of this effect is currently unknown.

Therefore, the aims of this study were to quantify the volume, proportion, and longitudinal distribution of contractile and non-contractile volumes in the dorsiflexor and plantar flexor muscles...
of young and older adults, and to determine whether contractile volumes can be accurately estimated in both groups from single MRI cross-sections and models of tissue distribution.

2. Methods

2.1. Subjects

Twelve young (21–31 yrs) and 12 older (66–79 yrs) male and female subjects, free from musculoskeletal or neurological impairments, participated in the study (Table 1). The young subjects were a typical population of graduate students who all participated in regular physical activity. The older subjects were independent, community-dwelling adults who engaged in regular physical activity, typically walking for exercise several times a week. Prior to participating, subjects read and signed an informed consent document approved by the university’s institutional review board.

2.2. Magnetic resonance imaging

Image acquisition: axial images (“slices”) of the left leg were taken using a 1.5 T MRI system (Sigma EchoSpeed Plus, General Electric) with a phased-array coil, using standard imaging parameters: T1-weighted spin echo sequence, 4 mm slice thickness with no gap, 400 ms repetition time, 11 ms echo time, 512 × 512 pixel resolution, 30 cm field of view. Due to leg length variation, the number of slices ranged from 114 to 171 (mean = 139), with total acquisition time ranging from ~20–30 min.

Muscle cross-sectional areas: adapting our earlier approach (Kent-Braun et al., 2000), a Matlab program (Mathworks, Natick MA) was created to identify muscle cross-sectional area (CSA) and to separate contractile and non-contractile tissue. Two observers outlined the perimeters of the soleus (SO), lateral (GL), and medial (GM) heads of the gastrocnemius, and the combined DF muscles (tibialis anterior, extensor hallucis longus, extensor digitorum longus, and peroneus tertius) in every other slice (Fig. 1), giving an effective image spacing of 8 mm. Observer A outlined 15 subjects and Observer B 9 subjects, using MR images from the Visible Human male dataset (Ackerman, 1991) as a guide.

Table 1
Subject characteristics (mean ± standard deviation).

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Age (yrs)</th>
<th>Ht. (cm)</th>
<th>Mass (kg)a</th>
<th>Lseg (cm)</th>
<th>BMI b</th>
<th>DF T_0 (Nm)c</th>
<th>PF T_0 (Nm)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>6</td>
<td>27 ± 3</td>
<td>181 ± 6</td>
<td>76.9 ± 8.2</td>
<td>24.9 ± 3</td>
<td>24.9 ± 3</td>
<td>42 ± 9</td>
<td>114 ± 28</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>26 ± 3</td>
<td>165 ± 8</td>
<td>57.2 ± 6.6</td>
<td>21.9 ± 1.1</td>
<td>21.9 ± 1.1</td>
<td>31 ± 7</td>
<td>71 ± 23</td>
</tr>
<tr>
<td>O</td>
<td>6</td>
<td>73 ± 5</td>
<td>177 ± 8</td>
<td>91.7 ± 10.3</td>
<td>30.1 ± 2.0</td>
<td>30.1 ± 2.0</td>
<td>35 ± 7</td>
<td>61 ± 10</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>70 ± 5</td>
<td>166 ± 9</td>
<td>72.6 ± 17.0</td>
<td>26.7 ± 3.4</td>
<td>26.7 ± 3.4</td>
<td>34 ± 12</td>
<td>79 ± 34</td>
</tr>
</tbody>
</table>

a Y: young; O: older; M: male; F: female.

b BMI: body mass index: mass (kg) divided by squared height (m).

c Maximal isometric torque (T_0) for dorsiflexors (DFs) and plantar flexors (PFs), measured with a Biodex dynamometer. Note that these measures were taken with the knee bent at 90°; also the relatively high torque values for the older females are skewed by two particularly strong subjects.

d For mass: main effects of age ($p < .001; F = 15.0$) and gender ($p < .001; F = 40.0$); for BMI: main effects of age ($p < .001; F = 25.7$) and gender ($p = .003; F = 11.5$); for T_0, main effect of age ($p = .028; F = 5.2$) and three way-interaction between age, gender, and muscle group ($p = .034; F = 4.8$). n: number of subjects; L_{seg}: leg length.

![Fig. 1](image-url). Comparison of axial MRI slices from one young (A; aged 29 years) and one older (B; aged 79 years) male at 20% leg length (C). Note significant increase in non-contractile tissue (light pixel intensities) in the older subject. Muscles are color-coded: dorsiflexors—red; soleus—green; gastrocnemius—blue. Panel (D) shows example young and old pixel intensity histograms separating tissue into cortical bone and connective tissue (I), muscle (II), and trabecular bone and adipose tissue (III). Both raw (black) and smoothed (red) data are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Tissue separation: to quantify contractile and non-contractile content for each muscle, the analysis software generated a histogram of the intensity distribution for all pixels within the anatomical segment boundary for each slice (Fig. 1D). Lower intensities represent cortical bone and connective tissue, higher intensities represent trabecular bone and adipose tissue, and intermediate intensities represent muscle tissue (Kent-Braun et al., 2000; Comberg et al., 2005). Separation thresholds were automatically chosen as the intensities at zero slope on either side of the peak muscle intensity, after applying a 40-point moving average smoothing function to the histogram data. Pixels were re-colored on the images based on these thresholds to facilitate small adjustments by the user to the automated thresholds.

CSA computation: total CSA (CSAT) was calculated by multiplying the number of pixels within an outlined region by single pixel area. Contractile-only CSA (CSAC) was similarly calculated, with the pixel count limited to intermediate intensities. Non-contractile tissue CSA (CSANC) was calculated as CSAT − CSAC.

2.3. Analysis

Reliability: to assess intra-observer reliability, Observer A re-analyzed the slices at 20% and 40% leg length of all 15 subjects several months later in a blinded fashion. To assess inter-observer reliability, Observer A also re-analyzed the 20% and 40% slices of Observer B’s 9 subjects.

Muscle volume calculations from MRI dataset: for each subject, a five-point moving average was used to remove high-frequency measurement noise in the CSA data, applied to each muscle for the entire set of contiguous scans along its length. Because this measurement noise is random, the smoothing does not affect the actual volumes. Total (VC) and contractile-only (VC) muscle volumes were computed by trapezoidal integration of the CSAN and CSAf curves, respectively.

\[
V = \int_0^{\text{L}_{\text{leg}}} \text{CSA}_d \, dz = 2 \int_{\text{SL}_1}^{\text{SL}_p} \text{CSA}_d \, dz / 2
\]

where \(V \) is the volume (either \(V_c \) or \(V_c \)), \(p \) and \(d \) are the slice numbers (i) of the most proximal and distal images containing muscle tissue, respectively, and the step size (\(\Delta x \)) is 8 mm. Non-contractile tissue volume, \(V_{\text{NC}} \), was calculated as \(V_T − V_c \), and expressed as a percentage of the total muscle volume (\(V_{\text{SNC}} \)).

Characterization of CSA distribution: each subject’s CSA data were normalized to lower leg length \(\text{L}_{\text{leg}} \), determined from axial images in which the tibial plateau and lateral malleolus apex were visible. Slices were linearly interpolated to integer muscle intensities, after applying a 40-point moving average smoothing function to the histogram data. Pixels were re-colored on the images based on these thresholds, with muscle intensities at zero slope on either side of the peak intensities representing cortical bone and connective tissue, higher intensities representing non-contractile tissue along the length of the leg, with lowest proportion of non-contractile tissue in the older subjects (Fig. 1), with most non-contractile tissue uniformly distributed across each axial slice. Only one subject had distinct fatty inclusions in the PF muscles.

CSA reliability: ICCs were above .90 for intra- and inter-observer reliability (Supplementary Material, Table S1) for the four muscles, two slice locations, and two area types (CSAT, CSAC). The CSA SEM varied between 1.13 and 14.39 mm³. There was little systematic over- or under-estimation of CSAs within or between observers, reflected by insignificant ANOVA results (\(p > 1 \)). The exception was for \(V_c \) at 40% \(\text{L}_{\text{leg}} \), in which one observer had a small (4 mm²; .3%) but consistent overestimation of CSAf.

Measured muscle volumes: for young subjects there was no difference between total volume \(V_c \) and contractile volume \(V_c \) (post-hoc single-factor \(p = .102 \)), but older adults had smaller \(V_c \) compared to \(V_c \) (post-hoc single-factor \(p < .001 \); Age x volume type interaction \(p = .039 \); Table 2). Across the four muscles, older adults had on average 3.6 times more non-contractile tissue (\(V_{\text{SNC}} \); main effect). Overall, males had larger volumes than females (gender main effect for absolute volume, collapsed across the ages) and \(V_{\text{L}_{\text{leg}}} \), the strength of the relation between the \(V_{\text{L}_{\text{leg}}} \) and contractile volume distributions, with DF the most skewed (Fig. 2). Each age group’s maximum CSAC at \(\text{L}_{\text{leg}} \) was for DF at 40% \(\text{L}_{\text{leg}} \), in which one observer had a small (4 mm²; .3%) but consistent overestimation of CSAf.

Characterization of measured CSA distribution: the shapes of the longitudinal CSAf distributions approximated skewed normal distributions, with DF the most skewed (Fig. 2). Each age group’s average CSAf distribution was well approximated by the GEV model, with the lowest \(r^2 = .97 \) (Table 3). The GL and GM had maximum CSAf at \(\sim 20 \% \text{L}_{\text{leg}} \), while DF and SO maximums were more distal, at \(\sim 40 \% \text{L}_{\text{leg}} \) (Table 3). A non-linear relation for the CSAf distribution reflected a varying proportion of non-contractile tissue along the length of the leg, with lowest proportions near the center of the muscle belly and a tendency to increase distally, especially in DF and SO (Fig. 3).

Muscle volume predictions: using age-specific equations from a single-slice at 30% \(\text{L}_{\text{leg}} \), the strength of the relation between the actual and predicted contractile volumes \(r^2 \) ranged from .77 to .96 for young and .72 to .97 for old, and accuracy (SEE) ranged from 5–11% for young (mean across muscles = 8%) and 5–15% for old (mean = 11%; Table 4; Fig. 4). The DF consistently had the greatest \(r^2 \)
Table 2
Muscle volumes. Total (V_T), contractile (V_C), and percent non-contractile (V_{NXC}) tissue volumes for each muscle. Values are mean ± standard deviation.

<table>
<thead>
<tr>
<th>Group</th>
<th>Variable</th>
<th>Muscle</th>
<th>DF</th>
<th>SO</th>
<th>GL</th>
<th>GM</th>
<th>TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y M (n=6)</td>
<td>V_T (cm3)</td>
<td>275 ± 32</td>
<td>442 ± 61</td>
<td>147 ± 30</td>
<td>264 ± 59</td>
<td>853</td>
<td></td>
</tr>
<tr>
<td>F (n=6)</td>
<td>V_C (cm3)</td>
<td>256 ± 27</td>
<td>423 ± 53</td>
<td>139 ± 28</td>
<td>255 ± 56</td>
<td>817</td>
<td></td>
</tr>
<tr>
<td>Pooled (n=12)</td>
<td>V_{NXC} (%)</td>
<td>4.5 ± 4.0</td>
<td>2.4 ± 2.7</td>
<td>2.9 ± 3.1</td>
<td>1.7 ± 2.0</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>O M (n=6)</td>
<td>V_T (cm3)</td>
<td>302 ± 53</td>
<td>517 ± 157</td>
<td>135 ± 33</td>
<td>233 ± 32</td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>F (n=6)</td>
<td>V_C (cm3)</td>
<td>257 ± 45</td>
<td>371 ± 151</td>
<td>110 ± 33</td>
<td>189 ± 43</td>
<td>670</td>
<td></td>
</tr>
<tr>
<td>Pooled (n=12)</td>
<td>V_{NXC} (%)</td>
<td>8.5 ± 9.5</td>
<td>10.4 ± 14.1</td>
<td>9.5 ± 10.8</td>
<td>8.3 ± 10.5</td>
<td>9.3</td>
<td></td>
</tr>
</tbody>
</table>

* Y: young; O: older; M: male; F: female.
* DF: dorsiflexors; SO: soleus; GL: gastrocnemius (lateral head); GM: gastrocnemius (medial head).
* Total triceps surae (TS) volumes (SO + GL + GM); average triceps surae values reported for V_{NXC}.
* Non-contractile volume expressed as a percentage of V_T.

Fig. 2. Mean ± SD contractile cross-sectional areas (CSA_C) in relation to leg length (0% = knee; 100% = ankle) for each age group. DF: dorsiflexors (red); SO: soleus (green); GL: gastrocnemius (lateral head; blue); GM: gastrocnemius (medial head; magenta). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Parameters for generalized extreme value distributions (GEVs), which give the normalized contractile cross-sectional area (CSA_C) as a function of the longitudinal position within the leg. This specifies the “shape” of the muscles, and if integrated, gives a nominal volume (V_N). Models are specific to young (Y; n=12) and older (O; n=12) subjects.

<table>
<thead>
<tr>
<th>Muscle/age group</th>
<th>DF</th>
<th>SO</th>
<th>GL</th>
<th>GM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y O</td>
<td>Y O</td>
<td>Y O</td>
<td>Y O</td>
<td></td>
</tr>
<tr>
<td>Equation coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ (horizontal shift)</td>
<td>53.1</td>
<td>50.9</td>
<td>47.9</td>
<td>45.3</td>
</tr>
<tr>
<td>σ (horizontal scale)</td>
<td>−25.0</td>
<td>−23.9</td>
<td>−18.2</td>
<td>−17.2</td>
</tr>
<tr>
<td>ς (vertical scale)</td>
<td>−54.0</td>
<td>−50.5</td>
<td>−43.6</td>
<td>−39.4</td>
</tr>
<tr>
<td>ζ (shape)</td>
<td>−0.541</td>
<td>−0.533</td>
<td>−0.410</td>
<td>−0.426</td>
</tr>
<tr>
<td>Other parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range [p, d]</td>
<td>[6,102]</td>
<td>[8,100]</td>
<td>[5,94]</td>
<td>[6,84]</td>
</tr>
<tr>
<td>Max. CSA location (%C_0)</td>
<td>38</td>
<td>35</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>ν</td>
<td>52.7</td>
<td>49.5</td>
<td>43.4</td>
<td>39.4</td>
</tr>
<tr>
<td>r^2</td>
<td>.99</td>
<td>.99</td>
<td>.99</td>
<td>.99</td>
</tr>
</tbody>
</table>

* DF: dorsiflexors; SO: soleus; GM: gastrocnemius (medial head); GL: gastrocnemius (lateral head); Y: young; O: older.
* Minimum [p] and maximum [d] slice locations, as a percentage of the leg length (0% = knee; 100% = ankle), for which the equation applies.
* Longitudinal location (% leg length) of the maximum contractile CSA.
* Nominal contractile volume (V_N) given by Eq. (3) (see text).
* r^2 is the coefficient of determination (variance accounted for by the equation).
...and smallest SEE. Accuracies were greater for young compared to older subjects, and were not very different for specific and general equations. The Bland–Altman analysis indicated that prediction bias (mean difference between the actual and predicted volumes) was greater for the older group (mean absolute bias = 15%; specific equations) compared to young (3%; specific equations). Compared to the 30% \(L_{\text{Leg}} \) estimates, using single slices near muscle \(\text{CSA}_{\text{Max}} \) improved accuracy and bias in some cases (e.g., young DF, SO), but not in others (e.g., old DF, young GM).

Predictions were also made using \(\text{CSA}_{\text{Max}} \) estimates from three, five, and ten slices per muscle, which in general improved accuracies and biases compared to the single-slice estimates (Table 5; Fig. 4). For example, using age-specific equations and five slices gave SEE values ranging from 2–4% for young (mean across muscles = 3%) and 3–7% for old (mean = 4%), with an average bias of 5% and 3% for young and older subjects, respectively. Increasing the number of slices per muscle (from three to five to ten) did not result in substantial improvements, except for the GL, which had a much smaller SEE when using ten slices compared to the three-slice estimate. As for the single-slice estimates, multi-slice accuracies did not differ much between specific and general equations. The strength of the relationships (\(r^2 \)) were similar between the young and older subject groups, although error (SEE) was smaller for young compared to older subjects.

4. Discussion

This study showed that the percentage of non-contractile tissue in older adults was on average 2–5 times greater than younger...
adults for the dorsiflexors (DF) and individual plantar flexors (PF), with PF towards the higher end of this range. Non-contractile tissue was distributed nonlinearly along the leg, increasing distally with minimums near the maximum compartment CSA. After fitting the CSA data with equations, single-slice CSA measures predicted contractile volume with an average error of about 8–11% for young and older adults. Using multiple slices (3–10) improved volume estimates by roughly 50%, with average errors of about 3–4%.

4.1. Age-related differences in contractile and non-contractile volumes

Contractile (V_C) and non-contractile (V_{NC}) volumes were quantified using full longitudinal sets of axial MRI images. For DF, older adults had smaller V_C and double the V_{NC} compared to young adults, agreeing with Kent-Braun et al. (2000) and McNeil et al. (2007) who used single MRI cross-sections at maximum CSA. For PF, V_C was 22% smaller in older compared to young males, close to the 19% difference in Thom et al. (2005) but lower than the 30% difference reported by Rice et al. (1989). The discrepancy with the latter study could be due to differences in subject populations, number of slices analyzed, and imaging technology. The Rice et al. study had a larger age range for the older group (up to 90 yrs), used a single scan at maximum limb girth, and used computed tomography, which cannot distinguish muscle from tendon (Rice et al., 1989).

We know of no previous comparisons of young and older PF V_C in females, but found an 18% age-related reduction. Older PF V_{NC} was on average four times greater than younger adults, consistent with Rice et al. (1989). In general, for the same leg volume, greater V_{NC} reflects less contractile material. While both PF and DF play important roles in many activities of daily living (Winegard et al., 1996), the 4-fold greater V_{NC} in older adults may make a larger contribution to age-related decrements in ankle function compared to the weaker DF and its smaller 2-fold difference in V_{NC}.

4.2. Contractile and non-contractile tissue distribution

We obtained measurements of longitudinal CSA distribution for DF, SO, GM, and GL muscles in young and older adults.

Fig. 4. Comparison between measured and predicted contractile volumes using either (A) equations that were fit to the specific age groups, or (B) general equations obtained by averaging the coefficients for the specific equations. The data for 12 young (solid symbols) and 12 older (open symbols) subjects are shown in each plot. Muscles include dorsiflexors (DF), soleus (SO), lateral head of gastrocnemius (GL) and medial head of gastrocnemius (GM). Predictions shown were based on: (1) one magnetic resonance image at 30% of the leg length (”30%”), (2) one image near the maximum contractile cross-sectional area (“Max”) for each muscle, and (3) five images for each muscle evenly distributed around the maximal cross-sectional area (”5 Slices”).
Generalized extreme value (GEV) functions were used to accurately characterize age group contractile CSAc distributions ($r^2 > .97$). The maximum CSAc for the GL and GM was at $\sim 20\% L_{leg}$, but was more distal for the DF and SO ($\sim 40\% L_{leg}$). Although Morse et al. (2005) presented data on longitudinal GL CSAc distribution in young and old males, these data were not normalized to leg length or characterized in equation form, making comparisons with our data difficult.

A unique finding was that the proportion of non-contractile tissue (CSANo/CSAc) was not uniformly distributed along the length of the muscles. The lowest proportion was near the maximum CSAc, generally increasing in proximal and distal directions. Such patterns are consistent with roughly constant absolute amounts of non-contractile tissue along the muscle length, making the relative proportion greater as the muscles taper to their origins/insertions. The variance explained by second order polynomial fitting differed between the muscles, with the greatest r^2 ($\sim .98$) for SO, while other muscles varied with r^2 values between .65 and .87. The better fit for SO could be related to its large volume, minimizing the influence of measurement error due to CSA rounding for partially filled pixels (Elliott et al., 1997).

4.4. Implications for musculoskeletal modeling

This study has shown how muscle volumes can be estimated from relatively few MRI slices in both young and older adults. Non-invasive imaging technology such as MRI permits the use of subject-specific muscle properties such as contractile volume in musculoskeletal models that are sensitive to input parameters (Scovil and Ronsky, 2006). The ability to create more accurate subject-specific models of the senescent human musculoskeletal system will become increasingly useful for advancing our understanding of the functional impact of sarcopenia and other age-related muscle changes.

Conflict of interest statement

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Acknowledgments

The authors thank Luis Rosado, Ross Miller, and Scott Caldwell for assistance with data collection and analysis, John Buonaccorsi for statistical help, and Pawel Skudlarski and Steve Foulis for MRI software help. This research was supported by the NIH Grant R03AG026281 (GEC).
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jbiomech.2011.05.031.

References