Neighborhood Racial Composition and Perceptions of Racial Discrimination: Evidence From the Black Women’s Health Study
Matthew O. Hunt, Lauren A. Wise, Marie-Claude Jipguep, Yvette C. Cozier and Lynn Rosenberg
Social Psychology Quarterly 2007 70: 272
DOI: 10.1177/019027250707000306

The online version of this article can be found at:
http://spq.sagepub.com/content/70/3/272
Little is known about the effects of social context or “place” factors (e.g., characteristics of local populations) on African Americans’ perceptions and experiences of racism. Using data from 42,445 U.S. black women collected during the 1997 follow-up wave of the Black Women’s Health Study, we investigated the association between neighborhood racial composition (“percent black” at the block-group level in 2000 Census data) and perceptions of racial discrimination. Perceived racial discrimination was measured using self-reports of the frequency of discrimination in “everyday” settings (e.g., being treated as if you are dishonest) and “lifetime” occurrences of discrimination on the job, in housing, and by the police. There was a linear inverse relationship between neighborhood percent black and perceived discrimination, i.e., higher percent black was associated with lower levels of discrimination. Our results support the conclusions that, relative to contexts in which blacks are a small minority, more evenly-mixed (i.e., integrated) contexts result in lower levels of discrimination (contact hypothesis), and mostly black contexts evidence the lowest levels of discrimination (ethnic density hypothesis).

"Black Americans spend much of their lives at a distance from white Americans, in part because they feel more comfortable that way, and in part because their separation has been imposed by white America.”

—Andrew Hacker, Two Nations: Black and White, Separate, Hostile, Unequal

* This work was supported by National Cancer Institute Grant #CA58420. We gratefully acknowledge the contributions of the Black Women’s Health Study participants and staff. Prior versions of this paper were presented at the American Association for Public Opinion Research meetings and at research workshops at Stanford University and Northeastern University; we thank participants at each for their feedback. Please direct all correspondence to Matthew O. Hunt, Sociology Department, 500 Holmes Hall, Northeastern University, Boston, MA, 02115; m.hunt@neu.edu.

Racial discrimination against African Americans is a pervasive problem in the United States (Bobo and Fox 2003; Feagin and McKinney 2003). Sociologists, social psychologists, and epidemiologists have examined the social forces shaping experiences of discrimination, as well as the consequences such experiences have for persons’ health and well-being (Kessler, Mickelson, and Williams 1999; Krieger and Sidney 1996; Schulz et al. 2000). Research on the determinants of perceived racial discrimination has generally focused on how individual-level factors such as age, education, and gender shape discrimination experiences (Forman,
Williams, and Jackson 1997). We know considerably less about the role of social context or “place” factors (e.g., characteristics of local populations) in shaping such outcomes (Welch et al. 2001).

Most research on the effects of social context on attitudes and perceptions has focused on the relationship between the racial composition (e.g., percent black) of local populations and whites’ racial attitudes (e.g., anti-black prejudice, opposition to race-targeted policies) (Fossett and Kiecolt 1989; Glaser 1994; Taylor 1998). Non-white populations have generally been neglected in social psychological research (Bobo 2000; Hunt et al. 2000) and in the study of social context effects in particular (Welch et al. 2001). Thus, our aim was to document how neighborhood context matters for blacks’ perceptions of racism, above and beyond their individual-level characteristics. We did so by using data from the Black Women’s Health Study and the 2000 U.S. Census to analyze the relationship between neighborhood racial composition (“percent black” at the census block-group level) and black women’s self-reported experiences of racial discrimination.

THEORETICAL BACKGROUND

Research on perceived discrimination typically distinguishes between two basic types: “everyday” discrimination and “lifetime” experiences of major discrimination events (Forman, Williams, and Jackson 1997; Williams, Neighbors, and Jackson 2003). Everyday (or “day-to-day”) discrimination refers to routine, often familiar practices that permeate the day-to-day existence of racial minorities (e.g., being treated as if one is dishonest, unintelligent, etc.). Lifetime (or “major”) events of discrimination refer to unfair treatment in key institutional contexts, such as at the workplace or in searching for a home.

Research documents that blacks experience higher levels of each type of racial discrimination than whites.1 For example, one recent study (Forman, Williams, and Jackson 1997) found that 70% of blacks, compared to 36% of whites, report at least one major discrimination event in their lifetime (and, 32% of blacks vs. 12% of whites report at least one event in the prior year). Regarding everyday discrimination, 41% of blacks vs. 17% of whites report “often” experiencing at least one of a list of nine occurrences. On the determinants of perceived discrimination, research shows that, among African Americans, such perceptions are more prevalent among younger persons, males, and those with higher levels of education (Forman, Williams, and Jackson 1997).

Current understandings of the role of social context come almost exclusively from studies of whites’ racial attitudes, where general conclusions differ depending on whether “micro” (e.g., individual-level interracial contact) or “macro” (e.g., race proportions of local populations) measures of social contact or context are examined. Tests of the “contact hypothesis” using individual-level data typically document positive effects of interracial contact on whites’ racial attitudes (Allport 1954; Pettigrew 1998), though support for the hypothesis becomes more tenuous when key assumptions such as voluntary contact and equal status are not met.2 In contrast, more macro-oriented studies generally support a “group threat” perspective wherein whites’ prejudice, use of negative stereotypes, opposition to race-targeted policies, and/or hostilities are heightened where the proportion of blacks in the local population is greater (Blalock 1967; Olzak 1992; Taylor 1998). As Welch et al. (2001) point out, we know least of all about the implications of smaller-scale (e.g., “meso” level) social context factors—such as characteristics of neighborhoods—for racial and

1 The prevalence of “perceived discrimination” (i.e., without specific reference to race) has been documented in relation to age, gender, and race/ethnicity (Kessler, Mickelson, and Williams 1999). When asked about the source of the discrimination, blacks are much more likely than whites to cite “race” as the locus of responsibility for the unfair treatment.

2 The “contact hypothesis” holds that opportunities for communication, interaction, and shared experience stemming from proximity and sustained interracial contact lead to greater familiarity, liking, and reduced reliance on prejudicial attitudes and stereotypes.
other sociopolitical attitudes, among both whites and blacks.

Regarding the relationship between neighborhood racial composition and African Americans' perceptions of racial discrimination, Welch et al. (2001) report the only direct study of this topic of which we are aware. Using data on percent black at the census tract level in Detroit, Welch et al. observed the highest levels of perceived discrimination among African Americans living in roughly equally mixed (e.g., 50% black, 50% non-black) racial contexts. To operationalize perceived discrimination, Welch et al. used a measure of “lifetime” events—specifically, a count (0–5) of the number of types of discrimination the respondent had ever experienced on the basis of his/her race across several domains. The observed curvilinear relationship between percent black and level of perceived discrimination showed a “tipping point” of approximately 50% black. Between 0 and 50% black, perceived discrimination increased as percent black increased. Above the 50% black level, perceived discrimination decreased.6

Welch et al. (2001) argue that discrimination is maximized in evenly mixed racial contexts because these places are commonly in transition, are the sites of turf battles, and likely represent contexts where blacks are perceived to be the greatest competition or threat by whites who do not want black neighbors. This pattern is generally consistent with research on social context (percent black) and whites’ racial attitudes, showing that whites’ prejudice and hostility toward blacks increases as blacks’ percentage of local populations does—at least to a tipping point (Fossett and Kiecolt 1989; Glaser 1994; Taylor 1998).7 Above a certain threshold of percent black (e.g., >50%), racial residential segregation almost certainly curtails opportunities for interracial contact (and thus opportunities for negative interactions).

While Welch et al. (2001) represents the definitive published study on the topic, other recent research on related topics suggests, in contrast, that perceived discrimination may be highest where blacks are least prevalent (rather than in evenly mixed racial contexts) and lowest where blacks are most prevalent. For instance, Oliver and Wong's (2003) recent study of neighborhood racial composition and intergroup attitudes shows that prejudice and hostility toward “out-groups” is highest in neighborhoods where “in-group” percentages are highest. For example, whites showed the strongest anti-black sentiment in neighborhoods where whites were most (and blacks were least) prevalent; more racially mixed neighborhoods produced lower levels of prejudice and stereotyping—findings interpreted in support of the “contact hypothesis” (Allport 1954; Pettigrew 1998). Also supporting the viewpoint that blacks experience the most dis-

3 Welch et al.'s sample was collected in the Detroit metropolitan area in 1992. 1,124 interviews were completed: 658 with blacks and 446 with whites. The gender breakdown of the sample was not reported, and results were not presented separately by gender (though they were by race).

4 The five types referred to ever having experienced discrimination on the basis of race in getting: (1) promoted to better positions, (2) a job, (3) equal wages for a job, (4) decent housing, and (5) a quality education.

5 Welch et al. report a “tipping point” of 50% black for a model predicting perceptions of discrimination against blacks in general. For their model of blacks’ perceptions of discrimination against themselves, they do not report a calculated tipping point, but write: “the results so closely resemble those we have just been discussing for perceptions of discrimination against blacks in general that an extensive presentation of results would be redundant” (p. 90). Our estimate of the tipping point, calculated based on their reported regression results for blacks’ perceptions of discrimination against themselves, is 62.5% black. Thus, for both “perceived discrimination” outcomes Welch et al. examined, a curvilinear relationship with percent black was observed, with tipping points (i.e., maximum discrimination) in the “roughly equally mixed” racial contexts, and varying slightly depending on the outcome measure.

6 It is unclear whether, above the 50% black threshold, discrimination levels dropped to the levels observed in the “least black” (0–20% black) census tracts. Bivariate analyses reported by Welch et al. (2001: 85) suggest that they did not—i.e., discrimination was lower in “largely white” (0–20% black) contexts than in mostly to all-black ones (>90% black). Their multivariate analyses support the general conclusion of a curvilinear association (see note 5) but do not allow determination of whether discrimination is lower in “mostly non-black” or “mostly black” contexts.

7 It is also consistent with the finding in the neighborhood racial preferences literature that, on average, whites report a preference for neighborhoods that are no more than 15% black (Charles 2003).
Neighborhood and Perceived Racial Discrimination

In exploring reasons underlying blacks' preference for a substantial proportion of co-ethnic neighbors, Krysan and Farley (2003) demonstrate that, while blacks are, in principle, generally favorable toward the goal of racial integration, and even the prospect of living in mostly white areas, they typically avoid “pioneering” such neighborhoods because of fears of white racism, hostility, and/or victimization.8

Regarding mostly black contexts, despite the many and varied negative connotations of racial segregation (Massey and Denton 1993; Williams and Collins 2001), such contexts, by structurally reducing opportunities for negative encounters with non-blacks, may reduce African Americans' likelihood of experiencing certain types of interpersonal racial discrimination. Consistent with this logic, numerous social psychological and epidemiologic studies suggest that racially/ethnically homogenous contexts (e.g., neighborhoods) are protective of minority mental health (Brown 2001; Rosenberg 1965; Wilson 1971), supporting what has been termed an “ethnic density hypothesis” (Halpern and Nazroo 1999).

When considered together, the literature just reviewed (i.e., Welch et al. 2001 and the subsequently discussed studies) supports the derivation of two competing hypotheses regarding the relationship between neighborhood racial composition and perceived discrimination among African Americans. Welch et al.'s (2001) findings support:

Hypothesis 1: The expectation of a curvilinear relationship where perceived discrimination is maximized in roughly equally-mixed racial contexts (e.g., 50% black, 50% non-black), and is lower in mostly non-black and mostly black ones.

The other reviewed studies (e.g., Oliver and Wong 2003, Krysan and Farley 2003, Halpern and Nazroo 1999) support an alternative prediction:

Hypothesis 2: The expectation of a linear inverse relationship between percent black and perceived racial discrimination, such that discrimination is highest where blacks are numerically fewest (i.e., mostly non-black contexts) and lowest where blacks are most prevalent (i.e., mostly black contexts).9

Methods

Study Population

The Black Women's Health Study is an ongoing U.S. prospective cohort study conducted by researchers at Boston University to examine risk factors for major illnesses in African American women. The study began in 1995 when 59,000 African American women were enrolled by completing mailed health questionnaires. Most respondents were subscribers to Essence magazine (a general readership magazine targeted to African American women), and a small proportion were friends and relatives of early responders and members of selected black professional organizations.10 At the outset of the study, subjects were 21 to 69 years of age (median 38 years) and came from across the U.S.; the states with the largest numbers of respondents are

8 Whereas previous research on racial segregation focused primarily on institutional factors such as exclusionary practices in housing and lending (Goering and Wienk 1996; Massey and Denton 1993; Yinger 1995), or on whites' decisions to avoid or leave black areas due to racism or negative social conditions believed to be correlated with the presence of blacks (Charles 2003; Harris 2001), Krysan and Farley explore the possibility that blacks' own preferences might help explain the persistent pattern of racial segregation. In doing so, they build on this research foundation by incorporating blacks' perceptions and preferences into our understanding of residential segregation.

9 Both of these hypotheses posit a central role of perceived "threat" (i.e., economic, political, and/or status) among non-blacks, caused by the presence of blacks, in explaining the unfair treatment underlying blacks' perceptions and experiences of discrimination. The key difference is the neighborhood context expected to produce maximum levels of discrimination: equally mixed for H1 and mostly non-black for H2.

10 There were 445,000 questionnaires mailed to women on the Essence subscription list and to friends and relatives of early responders; 67,000 (15%) were returned. Of those, 59,000 were deemed eligible for participation in the cohort study. Participation rates of this magnitude are typical for availability samples of individuals invited to participate in long-term epidemiologic follow-up studies (e.g., the Nurses' Health Study).
California, New York, Illinois, Michigan, Georgia, and New Jersey (Rosenberg, Adams-Campbell, and Palmer 1995). The 1995 (baseline) questionnaire elicited information on demographic and behavioral characteristics, anthropometric factors, health-care utilization, and medical conditions. Study participants have been followed every two years since through mailed questionnaires that update information on risk factors and determine the occurrence of disease. Over 80% of the original cohort has completed a questionnaire in each completed follow-up cycle.

The Black Women’s Health Study is not a representative sample of US black women. For instance, whereas about 17% of U.S. black women of the same ages as study participants have not completed high school, this was the case for only 3% of study participants (U.S. Department of Commerce 1996; U.S. Department of Commerce 1999). Further, comparisons with black women (same age range) from the 1996 General Social Survey (Davis and Smith 2005), a nationally-representative sample, suggest that Black Women’s Health Study participants are more educated, more likely to be married, and have higher household income compared with the general population of U.S. black women.

Despite the Black Women’s Health Study’s overrepresentation of relatively advantaged women, the study does contain substantial socioeconomic diversity (see Table 1), which, with its large size and richness on a range of important sociodemographic and attitudinal measures, make it a compelling data source for research into the social distribution of perceived racism. To supplement the findings reported in our tables, we performed a series of analyses (see Data Analysis section) designed to help assess the generalizability of our results by examining key associations of interest within important subgroups of education, income, and urbanicity. Similar results within these subgroups would enhance confidence in generalizing key findings to a broader population. We discuss this, and other issues of sample generalizability, further below.

Assessment of Perceptions and Experiences of Racism

The 1997 questionnaire contained eight questions designed to measure perceptions and experiences of racial discrimination in the study population. These items were adapted from questions developed by Williams and colleagues (Williams, Yu, Jackson, and Anderson 1997). Three questions asked about lifetime experience of being “treated unfairly due to your race” in three settings: on the job, in housing, and by the police. Response options were: yes or no. Five questions asked about the frequency in daily life (i.e., everyday) of the following experiences: “you receive poorer service than other people at restaurants or stores,” “people act as if they think you are not intelligent,” “people act as if they are afraid of you,” “people act as if they think you are dishonest,” and “people act as if they are better than you”. Response options were: “never,” “a few times a year,” “once a month,” “once a week,” and “almost every day”. Given the context in which the latter five questions were asked, and given the findings of Kessler et al. 1999 (note 1), we refer to these as experiences of everyday racism.

Principal components factor analysis of all eight items (varimax rotation) revealed two underlying factors with eigenvalues greater than 1.0. The first factor was comprised of the five everyday racism items which showed factor loadings ranging from .65 to .81. The second factor was comprised of the three items tapping lifetime experiences of a major discrimination event; these items revealed factor loadings of .60 to .77. An additional factor analysis using dichotomous versions of all eight items (achieved by employing a binary “once a month or more” cutoff for the everyday racism items) revealed the same two-factor solution. While such
NEIGHBORHOOD AND PERCEIVED RACIAL DISCRIMINATION 277

discrimination items individually, and as two summary measures (one for everyday and one for lifetime). Given the (original) dichotomous nature of the lifetime discrimination items, and for consistency and ease of interpretation, we elected to report results for dichotomous versions of all the discrimination variables. The lifetime discrimination items were analyzed in their original form (yes = 1,
no = 0). For the five-level everyday racism items, we employed a binary cutoff of “once a month or more” = 1, otherwise = 0.13

To construct our summary measure of everyday racism we first counted whether the respondent ever experienced each of the five types of everyday racism (range of values: 0–5; see Table 2). We then dichotomized this measure using five positive responses as the cutoff (i.e., ever experienced all five types of everyday racism = 1, otherwise = 0). To construct our summary measure of lifetime discrimination, we first counted the number of positive responses across the domains of housing, police, and job discrimination (range of values: 0–3; see Table 2). We then dichotomized this measure using three positive responses as the cutoff (i.e., ever experienced all three lifetime racism events = 1, otherwise = 0).14

Assessment of Neighborhood Racial Composition and Other Covariates

Information on subjects’ neighborhood of residence in 1995 was linked with data from the 2000 U.S. Census (U.S. Census Bureau 2002). We used census block groups as proxies for residential neighborhood. Census block groups are subdivisions of census tracts that include an average of approximately 1,500 people, making our study a closer representation of “neighborhood” factors than research using larger groupings, such as metropolitan areas, counties, zip codes, or census tracts. Participants were geocoded to their respective block groups by a commercial firm that was reported to have high geocoding accuracy (Krieger et al. 2001).

Our primary explanatory variable was percent of households with persons who are African American (hereafter “percent black”). The selection of additional neighborhood-level census variables for consideration was guided by previous research on health-related outcomes and/or perceived discrimination (Diez Roux 2001; Robert and Reither 2004; Williams, Neighbors, and Jackson 2003), as well as by associations observed between these variables and neighborhood composition (Table 1).15

We assessed the following neighborhood-level variables: percent of households below the poverty level; percent of individuals 16 years of age or older who were unemployed; median housing value; median household income; percent of adults 25 years of age or older who have completed college; percent of employed individuals 16 years of age or older in white-collar occupations (executive, managerial, or professional specialty occupations); percent of households with interest, dividends, or net rental income; total crime index; percent of families with children; percent married; and, level of urbanization (population density of <2,500, 2,500–49,999, and ≥50,000).

Individual-level data on age, geographic region of residence, education, occupation, marital status, and weight and height (from which we calculated Body Mass Index (kilograms divided by meters squared)) were ascertained on the baseline survey. Data on foreign-born status and household income were collected on the 1997 and 2003 follow-up surveys, respectively. These neighborhood- and individual-level variables were considered as potential confounders or effect modifiers of the main association.

Finally, given the dearth of knowledge on the general topic of this study, we do not make specific predictions for particular perceived discrimination items used as outcomes (i.e., we know of no a priori basis on which to pre-

13 For the everyday racism items, we explored other cut-points, as well as analyses using the original (continuous) versions of these items; these analyses showed similar results.

14 For each summary variable, we explored alternative cut-points to confirm that our reported results were robust.

15 Our definition of confounding was informed by Rothman and Greenland (1998: 123–125) who write: “A confounding factor must be a risk factor for the outcome and must be associated with the exposure under study in the source population (i.e., the population at risk from which the cases are derived).” In a cohort study, the latter point implies only that the association between the potential confounding factor and the exposure be present among subjects at the start of follow-up. Determinants of perceived racism that were associated with percent black variable (Table 1) were considered possible confounders and were controlled in our models.
dict that one everyday racism item will be more or less strongly associated with neighborhood percent black than another). Having said this, it does seem reasonable to posit that, given the “neighborhood-level” nature of our key exposure (percent black), the lifetime housing and perhaps police-based discrimination items may be more closely tied to our exposure variable than the job discrimination item.

Exclusion Criteria

The present analyses were restricted to respondents who completed the 1997 questionnaire and who provided complete information on the perceived racism items. This resulted in the exclusion of 5,906 women who did not complete the 1997 survey and 5,440 women who did not complete all perceived racism items. We further excluded 4,304 women with insufficient neighborhood data at the census block group level (e.g., participants with out-of-country addresses or institutional addresses) and 991 women with missing data on covariates that were controlled for in the analysis.

Data Analysis

We prospectively assessed the relation of neighborhood racial composition to perceptions of racism. Women were divided into equally spaced categories based on their neighborhood’s racial composition (percent black): <20, 20–39, 40–59, 60–79, and ≥80. We chose to categorize our main independent variable to explore possible non-linearity. We computed means and proportions for various characteristics associated with neighborhood racial composition, standardized to the age distribution of the cohort at baseline.

Multiple hierarchical logistic regression models were used to regress perceived racism on neighborhood racial composition and other covariates. These models accounted for correlation at the level of neighborhood (i.e., more than one woman living in the same block group). Within-block group correlation may violate statistical independence assumptions and result in biased standard errors (Raudenbush and Bryk 2002). Fixed-effect estimates were examined for the neighborhood- and individual-level independent variables. Odds ratio (OR) and 95 percent confidence interval (CI) was reported for the association of “percent black” with each perceived racism variable in the multiple logistic regression. While 39.3% of the 22,365 distinct block groups contained more than one participant, the variance-adjusted and unadjusted estimates were quite similar. However, HLM-derived results are given to allay any concerns that results were affected by clustering of women within those block groups in which two or more participants lived (Raudenbush and Bryk 2002).

Analyses were carried out using SAS version 9.1 (SAS Institute 2004) and MLWIN version 2.1e (hierarchical modeling) statistical software (Rasbash et al. 2004).

We constructed two sets of multivariate models. The first model controlled for individual-level covariates selected from a set of variables associated with perceived discrimination in past research (Kessler, Mickelson, and Williams 1999; Williams, Neighbors, and Jackson 2003) and with neighborhood racial composition in our sample (Table 1), including several important SES indicators. The sec-

16 The proportion of women with missing values for the perceived discrimination questions ranged from 10% for those living in <20% black neighborhoods to 12% for those living in ≥80% black neighborhoods.

17 The 42,445 women included in the final analytic sample were generally similar to those not included with respect to key variables such as age, education, marital status, occupation, and geographic region (results available upon request).

18 Since the racial/ethnic makeup of the “non-black” portion of the block groups in which our respondents reside almost certainly varies, and because we are using “percent black” as our primary exposure, we purposely use the term “non-black,” rather that white, when referring to that portion of census block groups not comprised of blacks.

19 Of the women in the present analyses, 19.3% lived in block groups containing two participants, 9.1% lived in block groups with three participants, and 10.9% lived in block groups with four or more participants. While disagreement exists regarding whether HLM is optimal when there are few cases clustered within neighborhood units (Duncan, Connell, and Klebanov 1997), we employ the method (in addition to more traditional models) to confirm that any existing clustering did not affect our results.
ond model additionally controlled for neighborhood-level covariates that may also be confounders of the association of interest. The first model adjusted for age, geographic region (Northeast, South, Midwest, West), obesity (Body Mass Index ≥ 30), and foreign-born status (U.S. vs. non-U.S.), as well as individual-level measures of SES, including education ($\leq 12, 13-15, 16, \geq 17$ years), occupation (professional/managerial, sales/clerical, service/crafts/operative/farmer, other), and marital status (single, divorced/separated/widowed, married or living with partner). The second model further adjusted for percent living below the poverty level, percent unemployed, and percent adults aged 25 or over who completed college. Further control for individual-level household income and other census covariates did not appreciably change the effect estimates and were not included in the final models.\footnote{We took additional steps to qualitatively assess the linearity of our main association. Specifically, we transformed the percent black variable into equally spaced categories (20% increments) and plotted the midpoint of each category vs. the log odds. We also performed likelihood ratio tests that compared a 10-knot restricted cubic spline model to the linear model nested within it (Durrleman and Simon 1989). When we examined the association of the perceived racism variables with "percent black," cubic polynomials were fit between specified knots (boundaries) and restrictions were placed on the resulting curve to ensure a smooth appearance at the knot points. We used stepwise selection procedures to determine the number and placement of knots for "percent black" (Durrleman and Simon 1989). We performed tests for trend in a separate model by introducing neighborhood racial composition into the model as an ordinal variable and evaluated the associated likelihood ratio test p-value at the 0.05 level of significance (Breslow and Day 1987). We also estimated models entering both a continuous "percent black" and a "percent black squared" term to test for a possible quadratic association. None of these assessments revealed evidence of non-linearity in the observed association.}

We also performed analyses that were stratified by individual-level education and census-level urbanization (<50,000 population vs. $\geq 50,000$ population) and median household income (<$40,556 vs. $\geq 40,556$) to explore whether the relation between neighborhood composition and perceived racism was modified by these variables. To formally test for interaction on the multiplicative scale, we computed the likelihood ratio test for the comparison of models with and without interaction terms. Finally, to assess the possible influence on our results from misclassification of neighborhood SES due to change of address by Black Women’s Health Study participants, we ran the final model restricted to the 34,715 (82%) women in our sample who had remained at the same address during the 1995–1997 follow-up period.

RESULTS

There were 42,445 women in the study sample distributed over 22,365 census block groups. Table 1 gives the distribution of various individual- and neighborhood-level variables across five categories of the neighborhood racial composition variable. Neighborhood racial composition (percent black) was inversely associated with educational attainment, professional/managerial occupation, individual-level household income, being married, and living in the West, and positively associated with age, Body Mass Index, and living in the South or Midwest (Table 1). Neighborhoods with greater percent black had a greater proportion of unemployed residents, residents living below the poverty level, families with children, and total crime; these same neighborhoods had a lower proportion of residents who were married, had completed college, had white-collar employment, or had income from dividends, rent, or interest, as well as lower median household income and housing values.

Table 2 shows that 30% of participants lived in neighborhoods that were $<20\%$ black, another 30% lived in neighborhoods that were $\geq 80\%$ black; the rest of participants lived in neighborhoods with intermediate percent black.\footnote{It is worth noting that, while our sample overrepresents higher-status black women overall, substantial socioeconomic (SES) diversity exists within each neighborhood percent-black quintile (Table 2).} Table 2 also shows that the most frequent occurrence (at least one a month) of everyday racism toward participants was “people act as if they are better than you,” reported by just over one-third (34.5%) of women. The percentages of participants...
Table 2. Univariate Distributions of Main Exposure and Outcome Variables (N=42,445)

<table>
<thead>
<tr>
<th>Neighborhood Racial Composition (Census 2000)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥80 percent black</td>
<td>30.1</td>
</tr>
<tr>
<td>60–79 percent black</td>
<td>13.1</td>
</tr>
<tr>
<td>40–59 percent black</td>
<td>11.8</td>
</tr>
<tr>
<td>20–39 percent black</td>
<td>14.7</td>
</tr>
<tr>
<td><20 percent black</td>
<td>30.3</td>
</tr>
</tbody>
</table>

Everyday Racism Items

“In your day-to-day life, how often have any of the following things happened to you?”

Poor service ("You receive poorer service than other people at restaurants or stores")

- Almost Every Day: 2.5%
- Once a week: 6.1%
- Once a month: 8.8%
- Few times a year: 69.7%
- Never: 12.9%

Not intelligent ("People act as if they think you are not intelligent")

- Almost Every Day: 8.6%
- Once a week: 9.2%
- Once a month: 8.7%
- Few times a year: 51.8%
- Never: 21.7%

Afraid of you ("People act as if they are afraid of you")

- Almost Every Day: 4.4%
- Once a week: 5.4%
- Once a month: 5.3%
- Few times a year: 38.0%
- Never: 47.0%

Dishonest ("People act as if they think you are dishonest")

- Almost Every Day: 3.2%
- Once a week: 4.0%
- Once a month: 4.9%
- Few times a year: 42.8%
- Never: 45.1%

Better than you ("People act as if they are better than you")

- Almost Every Day: 15.9%
- Once a week: 8.7%
- Once a month: 9.9%
- Few times a year: 52.9%
- Never: 12.6%

Everyday racism count (# times said “ever” to five items above)

<table>
<thead>
<tr>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>35.7</td>
</tr>
<tr>
<td>4</td>
<td>23.8</td>
</tr>
<tr>
<td>3</td>
<td>19.6</td>
</tr>
<tr>
<td>2</td>
<td>11.1</td>
</tr>
<tr>
<td>1</td>
<td>6.2</td>
</tr>
<tr>
<td>0</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Lifetime Racism Items

“Have you ever been treated unfairly due to your race in any of the following circumstances?”

- "Job (hiring, promotion, firing),” % yes: 58.0%
- "Housing (renting, buying, mortgage),” % yes: 35.3%
- "Police (stopped, searched, threatened),” % yes: 23.4%

Lifetime racism total count: (# times said “yes” to three items above)

<table>
<thead>
<tr>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>11.1</td>
</tr>
<tr>
<td>2</td>
<td>24.9</td>
</tr>
<tr>
<td>1</td>
<td>33.5</td>
</tr>
<tr>
<td>0</td>
<td>30.5</td>
</tr>
</tbody>
</table>
reporting other everyday racism experiences at the at least once a month level were: 26.5 for not intelligent, 17.4 for poor service, 15.1 for afraid of you, and 12.1 for dishonest. Of the lifetime items, unfair treatment on the job was reported by 58% of women, and unfair treatment in housing or by police was reported by 35.3% and 23.4%, respectively (Table 2).

Tables 3 and 4 reveal a consistent, inverse association between percent black and perceived racism: lower percent black was significantly associated with increased perceived racism for virtually all racism variables, and all adjusted odds ratios comparing the lowest to highest categories of the percent black measure were above 1.0. For example, Table 3 shows that, compared with women living in neighborhoods with the highest percent black (≥80 percent), the multivariate odds of women living in the lowest category of percent black (<20%) was 1.30 for “poor service” (95% Confidence Interval (CI) = 1.20–1.41), 1.26 for being treated as “not intelligent” (95% CI = 1.18–1.35), 1.40 for being reacted to as if others were “afraid of you” (95% CI = 1.29–1.53), 1.33 for being reacted to as if you were “dishonest” (95% CI = 1.21–1.46), and 1.24 for having people act as if they are “better than you” (95% CI = 1.16–1.32). Finally, regarding the summary measure of everyday racism, the multivariate odds ratio for reporting all five everyday racism experiences (“ever” on all five items) was 1.40 (95% CI = 1.31–1.49) for women living in the lowest percent black context compared to the highest.

Regarding lifetime experiences of major discrimination events, Table 4 shows that the multivariate odds ratios comparing women in the lowest to highest percent black contexts for job, housing, and police discrimination, respectively, were: 1.15 (95% CI = 1.08–1.22), 1.62 (95% CI = 1.51–1.73), and 1.11 (95% CI = 1.04–1.20). Thus, of the three lifetime racism measures, housing discrimination is the most strongly associated with neighborhood racial composition. And, regarding the summary measure (i.e., report of having experienced all three lifetime discriminations), the multivariate odds ratio comparing women in the lowest to the highest percent black contexts was 1.38 (95% CI = 1.25–1.53). Thus, across both Tables 3 and 4, there was evidence of a monotonic linear association for most variables, and statistically significant tests for trend were found for all measures of everyday and lifetime perceived racial discrimination.

The same basic linear inverse association between percent black and perceived discrimination was observed in all sub-group models run to examine generalizability (see Methods; data not shown). Specifically, adjusted odds ratios among strata of individual-level educational attainment were similar and revealed no statistical interaction. Adjusted odds ratios among strata of neighborhood-level urbanicity were similar, with statistical interaction observed only for the “afraid” outcome, such that the inverse association between percent black and perceived discrimination was significantly stronger among women living outside an urbanized area (<50,000 population density).22 And, adjusted odds ratios among strata of neighborhood-level median household income were similar with statistical interaction observed only for the “housing” outcome, such that the inverse association between percent black and perceived discrimination was significantly stronger in the lower median household strata (<$40,556).23 As mentioned above, results were essentially unchanged when we used different binary cutoffs for the everyday racism variables (data not shown). Associations among the women who had not moved since enrollment in the study were similar to those observed in the complete sample (data not shown).

22 This interaction suggests that the perception of fear-based reactions may be especially likely when blacks are a small minority in non-urban as compared with urban settings—a finding that resonates with our knowledge of the historical treatment of blacks in largely white rural areas (Loewen 2005).

23 The same linear inverse association was also observed in neighborhoods that scored <25% of median household income ($29,772). The observed housing discrimination interaction suggests that such unfair treatment may be especially prevalent when blacks are a small minority in lower SES status compared to higher SES neighborhoods.
Table 3. Odds ratios (ORs) and 95% Confidence Intervals (CIs) for Perceptions of Everyday Racial Discrimination in Relation to Neighborhood Racial Composition (N=42,445)

<table>
<thead>
<tr>
<th>Characteristic (N = 12,864)</th>
<th>Neighborhood Racial Composition (% Black)</th>
<th>p–trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥80 (N = 12,864)</td>
<td>60–79 (N = 6,235)</td>
</tr>
<tr>
<td>Everyday racism variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor Service (≥1/month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td>1,954 (15.3)</td>
<td>922 (16.6)</td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td>1.00 (ref.)</td>
<td>1.10</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td>1.00 (ref.)</td>
<td>1.13 (1.03–1.23)</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td>1.00 (ref.)</td>
<td>1.11 (1.02–1.22)</td>
</tr>
<tr>
<td>Not intelligent (≥1/month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td>3,149 (24.7)</td>
<td>1,416 (25.5)</td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td>1.00 (ref.)</td>
<td>1.10</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td>1.00 (ref.)</td>
<td>1.07 (0.99–1.16)</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td>1.00 (ref.)</td>
<td>1.07 (0.99–1.16)</td>
</tr>
<tr>
<td>Afraid of you (≥1/month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td>1,687 (13.2)</td>
<td>736 (13.2)</td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td>1.00 (ref.)</td>
<td>1.00</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td>1.00 (ref.)</td>
<td>1.00 (0.91–1.10)</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td>1.00 (ref.)</td>
<td>1.02 (0.93–1.12)</td>
</tr>
<tr>
<td>Dishonest (≥1/month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td>1,366 (10.7)</td>
<td>617 (11.1)</td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td>1.00 (ref.)</td>
<td>1.04</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td>1.00 (ref.)</td>
<td>1.04 (0.93–1.15)</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td>1.00 (ref.)</td>
<td>1.04 (0.94–1.15)</td>
</tr>
<tr>
<td>Better than you (≥1/month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td>4,122 (32.2)</td>
<td>1,890 (34.0)</td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td>1.00 (ref.)</td>
<td>1.08</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td>1.00 (ref.)</td>
<td>1.09 (1.02–1.17)</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td>1.00 (ref.)</td>
<td>1.09 (1.02–1.17)</td>
</tr>
<tr>
<td>Reported “ever” all five items above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td>4,069 (31.9)</td>
<td>1,881 (33.8)</td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td>1.00 (ref.)</td>
<td>1.10</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td>1.00 (ref.)</td>
<td>1.11 (1.04–1.19)</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td>1.00 (ref.)</td>
<td>1.10 (1.03–1.18)</td>
</tr>
</tbody>
</table>

* Adjusted for individual-level variables, including age (years), education (≤12, 13–15, 16, ≥17 years), marital status (single, married/partnered, divorced/separated/widowed), obesity (Body Mass Index ≥30), geographic region (Northeast, South, Midwest, West), occupation (Professional/Managerial, Sales/Clerical, Service/Crafts/Operative/Farmer, Other, Unknown/Missing), and Foreign-born (yes/no).

† Adjusted for individual-level (above) and neighborhood-level variables, including percent living below poverty level, percent unemployed, and percent adults ≥25 who completed college.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Neighborhood Racial Composition (% Black)</th>
<th>≥80</th>
<th>60–79</th>
<th>40–59</th>
<th>20–39</th>
<th><20</th>
<th>p-trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime racism variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job discrimination (Yes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td></td>
<td>7,195 (56.3)</td>
<td>3,195 (57.5)</td>
<td>2,916 (58.2)</td>
<td>3,605 (57.8)</td>
<td>7,720 (60.0)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.05</td>
<td>1.08</td>
<td>1.07</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.09 (1.01–1.16)</td>
<td>1.11 (1.04–1.19)</td>
<td>1.10 (1.03–1.16)</td>
<td>1.18 (1.11–1.24)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.08 (1.01–1.16)</td>
<td>1.11 (1.03–1.17)</td>
<td>1.08 (1.01–1.16)</td>
<td>1.15 (1.06–1.22)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Housing discrimination (Yes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td></td>
<td>3,713 (29.1)</td>
<td>1,832 (33.0)</td>
<td>1,757 (35.1)</td>
<td>2,474 (36.0)</td>
<td>5,455 (42.4)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.20</td>
<td>1.32</td>
<td>1.38</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.22 (1.14–1.31)</td>
<td>1.35 (1.26–1.46)</td>
<td>1.44 (1.35–1.54)</td>
<td>1.73 (1.63–1.83)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.21 (1.13–1.30)</td>
<td>1.33 (1.24–1.44)</td>
<td>1.40 (1.30–1.50)</td>
<td>1.62 (1.51–1.73)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Police discrimination (Yes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td></td>
<td>2,751 (21.5)</td>
<td>1,242 (22.3)</td>
<td>1,199 (23.9)</td>
<td>1,456 (23.4)</td>
<td>3,257 (25.3)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.05</td>
<td>1.15</td>
<td>1.11</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.03 (0.96–1.12)</td>
<td>1.12 (1.03–1.21)</td>
<td>1.06 (0.98–1.14)</td>
<td>1.09 (1.02–1.16)</td>
<td>0.009</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.04 (0.96–1.12)</td>
<td>1.12 (1.04–1.22)</td>
<td>1.07 (0.99–1.16)</td>
<td>1.11 (1.04–1.20)</td>
<td>0.003</td>
</tr>
<tr>
<td>Reported all three items above</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number (column %)</td>
<td></td>
<td>1,179 (9.2)</td>
<td>563 (10.1)</td>
<td>568 (11.3)</td>
<td>703 (11.3)</td>
<td>1,688 (13.1)</td>
<td></td>
</tr>
<tr>
<td>Unadjusted OR</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.11</td>
<td>1.26</td>
<td>1.25</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Adjusted OR (95%CI)*</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.13 (1.01–1.25)</td>
<td>1.27 (1.14–1.41)</td>
<td>1.27 (1.14–1.46)</td>
<td>1.37 (1.26–1.49)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Adjusted OR (95%CI)†</td>
<td></td>
<td>1.00 (ref.)</td>
<td>1.13 (1.01–1.26)</td>
<td>1.27 (1.14–1.42)</td>
<td>1.27 (1.14–1.42)</td>
<td>1.38 (1.25–1.53)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

* Adjusted for individual-level variables, including age (years), education (≤12, 13–15, 16, ≥17 years), marital status (single, married/partnered, divorced/separated/widowed), obesity (Body Mass Index ≥30), geographic region (Northeast, South, Midwest, West), occupation (Professional/Managerial, Sales/Clerical, Service/Crafts/Operative/Farmer, Other, Unknown/Missing), and Foreign-born (yes/no).
† Adjusted for individual-level (above) and neighborhood-level variables, including percent living below poverty level, percent unemployed, and percent adults ≥25 who completed college.
DISCUSSION

Using data from a large availability sample of African American women from across the United States, we examined the association between neighborhood racial composition (percent black at the block-group level using 2000 Census data) and perceptions of racial discrimination. While one prior study examining this general association (Welch et al. 2001) documented a curvilinear relationship with lifetime discrimination maximized in roughly equally mixed (e.g., 50% black/50% non-black) racial contexts, we observed a linear, inverse association between “percent black” and perceptions of both everyday and lifetime occurrences of racial discrimination—findings clearly supporting our Hypothesis 2.

Differences between our study and that of Welch et al. (2001) are many and could account for the divergent findings. These differences include the prior study’s inclusion of subjects from a single city (Detroit), its use of census-tract level data (compared with our use of census block groups), its use of a different measure of lifetime discrimination (and limitation to this measure, compared to our examination of both everyday and lifetime discrimination types), its smaller sample size ($N = 658$ blacks), and the fact that the “non-black” portion of Detroit neighborhoods is generally non-Hispanic white, while the ethno-racial composition of the non-black portion of neighborhoods of Black Women’s Health Study participants is almost certainly more variable. Each of those factors, along with the fact that our study is limited to women, could have contributed to the difference in the results of the two studies.\(^{24}\)

Our observation of a linear inverse association between neighborhood percent black and perceived racial discrimination resonates with past research on institutionally based exclusionary practices (Goering and Wienk 1996; Massey and Denton 1993; Yinger 1995) and whites’ residential preferences (Charles 2003), as well as with Krysan and Farley’s (2003) complementary finding that blacks avoid mostly non-black (e.g., white) neighborhoods owing to fears of hostility and discrimination. Thus, our results are compatible with the suggestion that blacks may represent the greatest status “threat” to whites where blacks are a relatively small (and perhaps new, socially and economically significant) minority, since as the percentage of blacks decreased there were progressively higher rates of perceived discrimination among our respondents.

Our general finding is also consistent with recent work on neighborhood racial composition and intergroup prejudice (Oliver and Wong 2003) showing that whites’ anti-black prejudice was highest where concentrations of whites were highest (and concentrations of blacks were lowest). The findings that more racially mixed settings lowered whites’ prejudice toward non-whites in the Oliver and Wong study, and lowered blacks’ perceptions of discrimination in our study, are consistent with the logic of the contact hypothesis (Allport 1954; Pettigrew 1998); such findings provide grounds for optimism regarding the potentially positive consequences of moving from neighborhoods with a small minority presence to ones with more genuine racial integration. On the other hand, the observation that blacks in our study experienced the most discrimination where they are “pioneers” of sorts (i.e., mostly non-black neighborhoods) illustrates the continuing difficulty of initial steps toward integrating social worlds that are mostly (or exclusively) non-black. Such evidence is important to note in light of trends toward the weakening and/or abandonment of initiatives (e.g., “Affirmative Action”) designed to facilitate the integration of social contexts that have historically excluded racial minorities (Ezorsky 1991).

Strengths of the current study include its large sample size, its prospective collection of data, the rich database, and the ability to control for within block-group correlation with multi-level statistical methods. Use of 2000 census data for linkage with the participants’ addresses from 1995 may have resulted in some misclassification, which would have tended to weaken associations. The decision to

\(^{24}\) Welch et al. did not report results separately for men and women; therefore, it is not clear how our results differ from those observed among women in their sample.
link to 2000 census data was driven by the fact that several variables of interest were included on the 2000 census that were not included in the prior census. The items we used to assess perceived discrimination were taken from a larger set of questions developed by Williams and colleagues (Williams et al. 1997) and administered to black and white populations. Responses to these questions have been associated with general health perceptions, mental health, and depression (Krieger 2000). However, this research area is relatively new and more work is needed to develop questions that are good measures of stress related to experiences of racism (Krieger 2000).

As mentioned above, since the Black Women’s Health Study overrepresents black women of higher socioeconomic status (Table 1), our results may not be applicable to the general population of U.S. black women. However, the lack of evidence for interaction by key sociodemographic indicators (e.g., education, income, and urbanicity) increases our confidence that results may be generalizable to black women living in social contexts underrepresented in our sample. Nonetheless, we acknowledge that there could be unmeasured ways in which our respondents differ from the U.S. black population, possibly rendering results specific to our sample.

The extent to which our results may generalize to other racial minority groups is unknown. The literature on residential preferences (e.g., Charles 2000) suggests that non-Hispanic whites are less hostile to non-black minorities than to blacks as potential neighbors. Thus, to the extent that non-Hispanic whites are the source of the discrimination observed in our study, the finding that black women experience the most racism where they are numerically fewest may not generalize to other ethno-racial groups, since a small presence of Asians and/or Hispanics (e.g., 0–20% concentration at the neighborhood level) likely carries different meaning for non-Hispanic whites than a comparable concentration of African Americans. Future research should explore this possibility, which lies beyond the scope of the data employed in the current study.

Given research suggesting that black women report less racial discrimination than do black men (Welch et al. 2001), it is possible that the relationship between neighborhood racial composition and perceptions of racism may be different for black men. In light of prevailing stereotypes and the associated threat perceived by many non-blacks in the presence of black males (Anderson 1990; Staples 1992), black men and black women may experience and interpret interactions in public space in different ways. For example, it seems reasonable to suggest that reports of police surveillance and the perception that “people act as if they’re afraid” may be more prevalent (and perhaps differently linked to neighborhood factors) for black men than black women. While beyond the scope of the current study, future research should investigate the possibility of such race by gender interactions in the perception and experience of racism.

Future research should also seek to better understand the social and psychological mechanisms by which neighborhood racial composition is translated into differential experiences of racial discrimination. Disaggregating the “non-black” portion of census tracts or blocks to examine whether specification of the size of various ethno-racial subgroups (e.g., % Asian, % Hispanic, % Non-Hispanic White) affects the association between percent black and perceived discrimination would be useful, as would expanding models to include perceptions of discrimination among groups other than African Americans. In addition, qualitative research techniques (e.g., in-depth interviews, field observations) could be fruitfully brought to bear on the topic at hand, thus continuing a rich tradition in sociology of explicating how social contexts shape social interactions and, ultimately, personal experience (Anderson 1978, 1990; Hannerz 2004; Pattillo-McCoy 1999).

Finally, our finding that levels of all types of perceived discrimination were lowest in the mostly black racial contexts is consistent with existing research demonstrating the protective effects of racial/ethnic homogeneity (i.e. “ethnic density”) on minority mental health.
(Brown 2001; Gee 2002; Halpern 1993; Rosenberg 1965). To note that racially homogenous (i.e., segregated) worlds may be psychologically protective is not an endorsement of segregated social arrangements. Rather, ethnic density may be psychologically protective precisely because of racism in the larger social order that all too often leads blacks' interactions with non-blacks to involve conflict, hostility, and/or unfair treatment (Feagin 1991; Jackson, Thoits, and Taylor 1995). Racial integration is associated with numerous positive social and economic benefits to minorities; however, owing to continued racial discrimination, it appears that the psychological price paid by African Americans for such social mobility—particularly when it leads them to mostly non-black contexts—continues to be high.

REFERENCES

Williams, D. R., Y. Yu, J. S. Jackson, and N. B.
Matthew O. Hunt is Associate Professor of Sociology at Northeastern University. His primary research interests involve intersections of race/ethnicity, social psychology, and inequality in contemporary societies. His ongoing projects include studies of perceived discrimination among African Americans, patterns of inter-regional migration in the United States, and antecedents and consequences of U.S. stratification ideology.

Lauren A. Wise is an Epidemiologist at the Slone Epidemiology Center and Assistant Professor of Epidemiology at the Boston University School of Public Health. Her primary interests are in women’s health and reproductive epidemiology. Her recent work focuses on the epidemiology of uterine leiomyomata (fibroids) in U.S. black women, with an examination of reproductive history, lifestyle, and psychosocial factors, including racial discrimination.

Marie-Claude Jipguep is Assistant Professor of Sociology at Howard University. Her research interests include socioeconomic factors related to racial health disparities, the impact of racism and discrimination on health outcomes and psychological functioning, HIV/AIDS and chronic disease prevention, and linkages between research and policy related to health and human rights with an emphasis on women and children.

Yvette C. Cozier is an Epidemiologist at the Slone Epidemiology Center and Assistant Professor of Epidemiology at the Boston University School of Public Health. Her research interests include social and genetic determinants of health in African American women, specifically, the influence of factors such as racism, neighborhood socioeconomic status, and genetics in the development of cancer, cardiovascular, and pulmonary disease.

Lynn Rosenberg is Professor of Epidemiology and Associate Director of the Slone Epidemiology Center at Boston University. She has conducted epidemiologic studies to elucidate risk factors for cardiovascular disease and cancer in women and men. Her recent work has focused on the health of African American women, including investigations of causes of breast cancer, preterm birth, and systemic lupus erythematosus.

