Explicit CP-Violation in the MSSM
through $gg \rightarrow H_1 \rightarrow \gamma \gamma$

ArXiv: 0903.0747v2 [hep-ph]

Shoaib Munir
(Instituto de Física, UNAM, México)

with Stefan Hesselbach, Stefano Moretti and Poulose Poulose

SUSY09, Boston, MA

June 7, 2009
The CP-Violating MSSM

- MSSM Higgs Sector
- Explicit CP-Violation
Outline

1. The CP-Violating MSSM
 - MSSM Higgs Sector
 - Explicit CP-Violation

2. Phenomenological Aspects
 - The Di-photon Decay Mode
 - Signatures of CP-Violation
Outline

1. The CP-Violating MSSM
 - MSSM Higgs Sector
 - Explicit CP-Violation

2. Phenomenological Aspects
 - The Di-photon Decay Mode
 - Signatures of CP-Violation

3. Outlook
The simplest possible MSSM superpotential (with R-parity)

$$W_{\text{MSSM}} = \hat{Q}\hat{H}_u\hat{h}_u\hat{U}^C + \hat{H}_d\hat{Q}\hat{h}_d\hat{D}^C + \hat{H}_d\hat{h}_e\hat{E}^C + \mu\hat{H}_u\hat{H}_d$$

containing two Higgs doublets \hat{H}_u and \hat{H}_d with $Y = \pm 1/2$

The most general Higgs potential in the MSSM can be written as

$$L_V = \overline{m}_1^2(H_d^\dagger H_d) + \overline{m}_2^2(H_u^\dagger H_u) + B\mu(H_d^\dagger H_u) + (B\mu)^*(H_u^\dagger H_d)$$

$$\quad + \lambda_1(H_d^\dagger H_d)^2 + \lambda_2(H_u^\dagger H_u)^2 + \lambda_3(H_d^\dagger H_d)(H_u^\dagger H_u) + \lambda_4(H_d^\dagger H_u)(H_u^\dagger H_d)$$

$$\quad + \lambda_5(H_d^\dagger H_u)^2 + \lambda_5^*(H_u^\dagger H_d)^2 + \lambda_6(H_d^\dagger H_d)(H_u^\dagger H_u) + \lambda_6^*(H_d^\dagger H_u)(H_u^\dagger H_d)$$

$$\quad + \lambda_7(H_u^\dagger H_u)(H_d^\dagger H_d) + \lambda_7^*(H_u^\dagger H_u)(H_u^\dagger H_d)$$

where, at tree level, $\overline{m}_1^2 = -m_1^2 - |\mu|^2$ and $\overline{m}_2^2 = -m_2^2 - |\mu|^2$, and

$$\lambda_1 = \lambda_2 = -\frac{1}{8}(g_2^2 + g_1^2), \quad \lambda_3 = -\frac{1}{4}(g_2^2 - g_1^2),$$

$$\lambda_4 = \frac{1}{2}g_2^2, \quad \lambda_5 = \lambda_6 = \lambda_7 = 0.$$
The simplest possible MSSM superpotential (with R-parity)

\[W_{\text{MSSM}} = \hat{Q} \hat{H}_u h_u \hat{U} + \hat{H}_d \hat{Q} h_d \hat{D} + \hat{H}_d \hat{\mu} \hat{E} + \mu \hat{H}_u \hat{H}_d \]

containing two Higgs doublets \(\hat{H}_u \) and \(\hat{H}_d \) with \(Y = \pm 1/2 \)

The most general Higgs potential in the MSSM can be written as

\[
\mathcal{L}_V = \overline{m}_1^2 (H_d^\dagger H_d) + \overline{m}_2^2 (H_u^\dagger H_u) + B \mu (H_d^\dagger H_u) + (B \mu)^* (H_u^\dagger H_d) \\
+ \lambda_1 (H_d^\dagger H_d)^2 + \lambda_2 (H_u^\dagger H_u)^2 + \lambda_3 (H_d^\dagger H_d)(H_u^\dagger H_u) + \lambda_4 (H_d^\dagger H_u)(H_u^\dagger H_d) \\
+ \lambda_5 (H_d^\dagger H_u)^2 + \lambda_5^* (H_u^\dagger H_d)^2 + \lambda_6 (H_d^\dagger H_d)(H_u^\dagger H_u) + \lambda_6^* (H_u^\dagger H_d)(H_u^\dagger H_d) \\
+ \lambda_7 (H_u^\dagger H_u)(H_d^\dagger H_d) + \lambda_7^* (H_u^\dagger H_u)(H_d^\dagger H_d)
\]

where, at tree level, \(\overline{m}_1^2 = -m_1^2 - |\mu|^2 \) and \(\overline{m}_2^2 = -m_2^2 - |\mu|^2 \), and

\[
\lambda_1 = \lambda_2 = -\frac{1}{8}(g_2^2 + g_1^2), \quad \lambda_3 = -\frac{1}{4}(g_2^2 - g_1^2), \\
\lambda_4 = \frac{1}{2}g_2^2, \quad \lambda_5 = \lambda_6 = \lambda_7 = 0
\]
Explicit CP-violation

- Beyond born approximation, two physical CP-violating phases appear in the MSSM Higgs sector: \(\arg(\mu) \) and \(\arg(A_f) \).
- These phases introduce off-diagonal terms in the Higgs mass matrix:
 \[
 M^2_0 = \begin{pmatrix}
 M^2_S & M^2_{SP} \\
 M^2_{PS} & M^2_P
 \end{pmatrix}; \quad M^2_{SP} = (M^2_{PS})^T = v^2 \begin{pmatrix}
 I(\lambda_5 e^{2i\xi}) s_\beta + I(\lambda_6 e^{i\xi}) c_\beta \\
 I(\lambda_5 e^{2i\xi}) c_\beta + I(\lambda_7 e^{i\xi}) s_\beta
 \end{pmatrix}
 \]
 where \(\lambda_6 \) and \(\lambda_7 \) are typically proportional to \((\mu A_f) \).
- Rotation to mass eigenvalues is now carried out by a \(3 \times 3 \) real orthogonal matrix \(O \) as \((\phi_1, \phi_2, a)^T = O(H_1, H_2, H_3)^T \), resulting in CP-indefinite Higgs bosons.
- \(O \) enters the effective Lagrangian describing Higgs interactions:
 \[
 \mathcal{L}_{H_i \bar{f} f} = - \sum_{f=u,d,l} \frac{g m_f}{2 M_W} \sum_{i=1}^3 H_i \bar{T}(g^S_{H_i \bar{f} f} + ig^P_{H_i \bar{f} f} \gamma_5) f
 \]
 where \((g^S, g^P) = (O_{\phi_1 i} / \cos \beta, -O_{ai} \tan \beta) \) for \(f = (l, d) \) and \((g^S, g^P) = (O_{\phi_2 i} / \sin \beta, -O_{ai} \cot \beta) \) for \(f = u \).
Beyond born approximation, two physical CP-violating phases appear in the MSSM Higgs sector: \(\arg(\mu) \) and \(\arg(A_f) \).

These phases introduce off-diagonal terms in the Higgs mass matrix:

\[
\mathcal{M}_0^2 = \begin{pmatrix}
\mathcal{M}_S^2 & \mathcal{M}_{SP}^2 \\
\mathcal{M}_{PS}^2 & \mathcal{M}_P^2
\end{pmatrix}; \quad \mathcal{M}_{SP}^2 = (\mathcal{M}_{PS}^2)^T = v^2 \begin{pmatrix}
\mathcal{I}(\lambda_5 e^{2i\xi}) s_\beta + \mathcal{I}(\lambda_6 e^{i\xi}) c_\beta \\
\mathcal{I}(\lambda_5 e^{2i\xi}) c_\beta + \mathcal{I}(\lambda_7 e^{i\xi}) s_\beta
\end{pmatrix}
\]

where \(\lambda_6 \) and \(\lambda_7 \) are typically proportional to \((\mu A_f) \).

Rotation to mass eigenvalues is now carried out by a \(3 \times 3 \) real orthogonal matrix \(O \) as \((\phi_1, \phi_2, a)^T = O(H_1, H_2, H_3)^T \), resulting in CP-indeterminate Higgs bosons.

\(O \) enters the effective Lagrangian describing Higgs interactions:

\[
\mathcal{L}_{H_i\bar{f}f} = - \sum_{f=u,d,l} \frac{g m_f}{2 M_W} \sum_{i=1}^3 H_i \bar{f} (g_i^S H_i \bar{f} + ig_i^P H_i \bar{f} \gamma_5) f
\]

where \((g^S, g^P) = (O_{\phi_1i}/ \cos \beta, -O_{ai} \tan \beta) \) for \(f = (l, d) \)

and \((g^S, g^P) = (O_{\phi_2i}/ \sin \beta, -O_{ai} \cot \beta) \) for \(f = u \).
Explicit CP-violation

- Beyond born approximation, two physical CP-violating phases appear in the MSSM Higgs sector: \(\arg(\mu) \) and \(\arg(A_f) \)
- These phases introduce off-diagonal terms in the Higgs mass matrix

\[
M_0^2 = \begin{pmatrix} M_S^2 & M_{SP}^2 \\ M_{PS}^2 & M_P^2 \end{pmatrix}; \quad M_{SP}^2 = (M_{PS}^2)^T = v^2 \begin{pmatrix} I(\lambda_5 e^{2i\xi})s_\beta + I(\lambda_6 e^{i\xi})c_\beta \\ I(\lambda_5 e^{2i\xi})c_\beta + I(\lambda_7 e^{i\xi})s_\beta \end{pmatrix}
\]

where \(\lambda_6 \) and \(\lambda_7 \) are typically proportional to \((\mu A_f) \)
- Rotation to mass eigenvalues is now carried out by a \(3 \times 3 \) real orthogonal matrix \(O \) as \((\phi_1, \phi_2, a)^T = O(H_1, H_2, H_3)^T \), resulting in CP-indefinite Higgs bosons
- \(O \) enters the effective Lagrangian describing Higgs interactions

\[
\mathcal{L}_{H_i \bar{f} f} = - \sum_{f=u,d,l} \frac{g m_f}{2 M_W} \sum_{i=1}^3 H_i \bar{f}(g^S_{H_i \bar{f} f} + ig^P_{H_i \bar{f} f} \gamma_5)f
\]

where \((g^S, g^P) = (O_{\phi_1 i}/\cos \beta, -O_{ai} \tan \beta) \) for \(f = (l, d) \)
and \((g^S, g^P) = (O_{\phi_2 i}/\sin \beta, -O_{ai} \cot \beta) \) for \(f = u \)
Explicit CP-violation

Beyond born approximation, two physical CP-violating phases appear in the MSSM Higgs sector: \(\arg(\mu) \) and \(\arg(A_f) \).

These phases introduce off-diagonal terms in the Higgs mass matrix

\[
\mathcal{M}_0^2 = \begin{pmatrix}
\mathcal{M}_S^2 & \mathcal{M}_{SP}^2 \\
\mathcal{M}_{PS}^2 & \mathcal{M}_P^2
\end{pmatrix}; \quad \mathcal{M}_{SP}^2 = (\mathcal{M}_{PS}^2)^T = v^2 \begin{pmatrix}
I(\lambda_5 e^{2i\xi})s_\beta + I(\lambda_6 e^{i\xi})c_\beta \\
I(\lambda_5 e^{2i\xi})c_\beta + I(\lambda_7 e^{i\xi})s_\beta
\end{pmatrix}
\]

where \(\lambda_6 \) and \(\lambda_7 \) are typically proportional to \((\mu A_f) \).

Rotation to mass eigenvalues is now carried out by a \(3 \times 3 \) real orthogonal matrix \(O \) as \((\phi_1, \phi_2, a)^T = O(H_1, H_2, H_3)^T \), resulting in CP-indefinite Higgs bosons.

\(O \) enters the effective Lagrangian describing Higgs interactions

\[
\mathcal{L}_{H_i\bar{f}f} = - \sum_{f=u,d,l} \frac{g_m f}{2M_W} \sum_{i=1}^3 H_i \bar{f} (g^S_{H_i\bar{f}f} + ig^P_{H_i\bar{f}f} \gamma_5) f
\]

where \((g^S, g^P) = (O_{\phi_1 i} / \cos \beta, -O_{ai} \tan \beta) \) for \(f = (l, d) \) and \((g^S, g^P) = (O_{\phi_2 i} / \sin \beta, -O_{ai} \cot \beta) \) for \(f = u \).
CP-Violation in $gg \rightarrow H_1 \rightarrow \gamma\gamma$

- We compute the process

- Gluon fusion - leading production process at the LHC for small $\tan \beta$
CP-Violation in $gg \rightarrow H_1 \rightarrow \gamma\gamma$

- We compute the process

- Gluon fusion - leading production process at the LHC for small $\tan \beta$
CP-Violation in $gg \rightarrow H_1 \rightarrow \gamma\gamma$

- We compute the process

- Gluon fusion - leading production process at the LHC for small $\tan\beta$

Shoaib Munir (Instituto de Física, UNAM, México)
Contd...

- $\gamma\gamma$ decay - a promising channel for Higgs discovery at LHC

- CP-phases enter at leading order in both production and decay
- The propagator undergoes CP-mixing at one-loop level

$$D(\hat{s}) = \hat{s}^{-1} \begin{pmatrix} \hat{s} - M_{H_1}^2 + i\mathcal{I}(\hat{\Pi}_{11})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{12})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{13})(\hat{s}) \\ i\mathcal{I}(\hat{\Pi}_{21})(\hat{s}) & \hat{s} - M_{H_2}^2 + i\mathcal{I}(\hat{\Pi}_{22})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{23})(\hat{s}) \\ i\mathcal{I}(\hat{\Pi}_{31})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{32})(\hat{s}) & \hat{s} - M_{H_3}^2 + \mathcal{I}(\hat{\Pi}_{33})(\hat{s}) \end{pmatrix}$$
Contd...

- $\gamma\gamma$ decay - a promising channel for Higgs discovery at LHC

- CP-phases enter at leading order in both production and decay
- The propagator undergoes CP-mixing at one-loop level

$$D(\hat{s}) = \left(\begin{array}{ccc}
\hat{s} - M_{H_1}^2 + i\mathcal{I}(\hat{\Pi}_{11})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{12})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{13})(\hat{s}) \\
i\mathcal{I}(\hat{\Pi}_{21})(\hat{s}) & \hat{s} - M_{H_2}^2 + i\mathcal{I}(\hat{\Pi}_{22})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{23})(\hat{s}) \\
i\mathcal{I}(\hat{\Pi}_{31})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{32})(\hat{s}) & \hat{s} - M_{H_3}^2 + i\mathcal{I}(\hat{\Pi}_{33})(\hat{s})
\end{array} \right)^{-1}$$

Shoaib Munir (Instituto de Física, UNAM, México)

Explicit CP-Violation in the MSSM through $gg \rightarrow H_1 \rightarrow \gamma\gamma$
Contd...

- $\gamma\gamma$ decay - a promising channel for Higgs discovery at LHC

$D(\hat{s}) = \begin{pmatrix} \hat{s} - M_{H_1}^2 + i\mathcal{I}(\hat{\Pi}_{11})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{12})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{13})(\hat{s}) \\ i\mathcal{I}(\hat{\Pi}_{21})(\hat{s}) & \hat{s} - M_{H_2}^2 + i\mathcal{I}(\hat{\Pi}_{22})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{23})(\hat{s}) \\ i\mathcal{I}(\hat{\Pi}_{31})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{32})(\hat{s}) & \hat{s} - M_{H_3}^2 + i\mathcal{I}(\hat{\Pi}_{33})(\hat{s}) \end{pmatrix}^{-1}$

- CP-phases enter at leading order in both production and decay
- The propagator undergoes CP-mixing at one-loop level
Contd...

- $\gamma\gamma$ decay - a promising channel for Higgs discovery at LHC

- CP-phases enter at leading order in both production and decay
- The propagator undergoes CP-mixing at one-loop level

$$D(\hat{s}) = \hat{s} \begin{pmatrix} \hat{s} - M_{H_1}^2 + i\mathcal{I}(\hat{\Pi}_{11})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{12})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{13})(\hat{s}) \\ i\mathcal{I}(\hat{\Pi}_{21})(\hat{s}) & \hat{s} - M_{H_2}^2 + i\mathcal{I}(\hat{\Pi}_{22})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{23})(\hat{s}) \\ i\mathcal{I}(\hat{\Pi}_{31})(\hat{s}) & i\mathcal{I}(\hat{\Pi}_{32})(\hat{s}) & \hat{s} - M_{H_3}^2 + i\mathcal{I}(\hat{\Pi}_{33})(\hat{s}) \end{pmatrix}^{-1}$$
Parameter scan for diphoton decay

- For the decay process, we used the fortran code CPSuperH
- MSSM inputs for the code include
 \(M_{H^\pm}, \tan \beta, \mu, \phi_\mu, M_{(1,2,3)}, \phi_{(1,2,3)}, M_{(\tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)}, A_f, \phi_{A_f} \)
- \(\phi_{A_f} \) fixed and \(\phi_\mu \) varied
- Collider constraints on loops (s)particle masses taken into account
- Scanned for regions in the parameter space where the difference in
 \(\text{BR}(H_1 \rightarrow \gamma\gamma) \) due to CP phases is maximized wrt CPC case
Parameter scan for diphoton decay

- For the decay process, we used the fortran code CPSuperH
- MSSM inputs for the code include $M_{H^\pm}, \tan \beta, \mu, \phi_\mu, M_{(1,2,3)}$, $\phi_{(1,2,3)}$, $M_{(\tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)}$, A_f, ϕ_A
- ϕ_A fixed and ϕ_μ varied
- Collider constraints on loops (s)particle masses taken into account
- Scanned for regions in the parameter space where the difference in $\text{BR}(H_1 \to \gamma\gamma)$ due to CP phases is maximized wrt CPC case
Parameter scan for diphoton decay

For the decay process, we used the fortran code CPSuperH

MSSM inputs for the code include:

- M_{H^\pm}, $\tan \beta$, μ, ϕ_μ, $M(1,2,3)$, $\phi(1,2,3)$, $M(\tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)$, A_f, ϕ_{A_f}
- ϕ_{A_f} fixed and ϕ_μ varied

Collider constraints on loops (s)particle masses taken into account

Scanned for regions in the parameter space where the difference in $BR(H_1 \rightarrow \gamma\gamma)$ due to CP phases is maximized wrt CPC case
Parameter scan for diphoton decay

- For the decay process, we used the fortran code CPSuperH
- MSSM inputs for the code include M_{H^\pm}, $\tan \beta$, μ, ϕ_μ, $M_{(1,2,3)}$, $\phi_{(1,2,3)}$, $M_{(\tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)}$, A_f, ϕ_{A_f}
- ϕ_{A_f} fixed and ϕ_μ varied
- Collider constraints on loops (s)particle masses taken into account
- Scanned for regions in the parameter space where the difference in $\text{BR}(H_1 \rightarrow \gamma\gamma)$ due to CP phases is maximized wrt CPC case
Parameter scan for diphoton decay

- For the decay process, we used the fortran code CPSuperH
- MSSM inputs for the code include $M_{H^\pm}, \tan \beta, \mu, \phi_\mu, M_{(1,2,3)}, \phi_{(1,2,3)}, M_{(\bar{Q}_3, \bar{u}_3, \bar{D}_3, \bar{L}_3, \bar{E}_3)}, A_f, \phi_{A_f}$
- ϕ_{A_f} fixed and ϕ_μ varied
- Collider constraints on loops (s)particle masses taken into account
- Scanned for regions in the parameter space where the difference in $\text{BR}(H_1 \rightarrow \gamma\gamma)$ due to CP phases is maximized wrt CPC case
Parameter scan for diphoton decay

- For the decay process, we used the fortran code CPSuperH
- MSSM inputs for the code include M_{H^\pm}, $\tan \beta$, μ, ϕ_μ, $M(1,2,3)$, $\phi(1,2,3)$, $M(\tilde{Q}_3, \tilde{U}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)$, A_f, ϕ_{A_f}
- ϕ_{A_f} fixed and ϕ_μ varied
- Collider constraints on loops (s)particle masses taken into account
- Scanned for regions in the parameter space where the difference in $\text{BR}(H_1 \to \gamma\gamma)$ due to CP phases is maximized wrt CPC case

- Minimum variation in Higgs mass and BR with no light sparticle; maximized with a light stop

Shoaib Munir (Instituto de Física, UNAM, México)
Contribution due to Sparticles

- Rise in BR_{CPV} when the \tilde{t}_1 is light; maximum variation in its mass

Explicit CP-Violation in the MSSM through $gg \rightarrow H_1 \rightarrow \gamma\gamma$
Contribution due to Sparticles

- Rise in BR_{CPV} when the \tilde{t}_1 is light; maximum variation in its mass.
- Negligible variation when the \tilde{b}_1 has mass close to the lower bound; $\mathcal{O}(300 \text{ GeV})$.
Total Cross-section

- Fortran code developed for computing $\sigma(gg \rightarrow H_i \rightarrow H_1 \rightarrow \gamma\gamma)$; matrix inversion for the propagator done using Lapack package

- M_{H^+} varied to scan over the H_1 mass, along with ϕ_{μ}
Total Cross-section

- Fortran code developed for computing $\sigma(gg \rightarrow H_i \rightarrow H_1 \rightarrow \gamma\gamma)$; matrix inversion for the propagator done using Lapack package
- M_{H^+} varied to scan over the H_1 mass, along with ϕ_{μ}
Fortran code developed for computing \(\sigma(gg \rightarrow H \rightarrow H_1 \rightarrow \gamma\gamma) \); matrix inversion for the propagator done using Lapack package

- \(M_{H^+} \) varied to scan over the \(H_1 \) mass, along with \(\phi_\mu \)
Conclusions and Outlook

- Considerable variation in the di-photon production cross-section via the lightest MSSM Higgs due to non-vanishing CP phases.
- Variation also sensitive to absolute values of ν and A_f.
- Need for certain MSSM parameters to be measured before, particularly t_1, for concrete evidence of explicit CP-vilation.
- Other Higgs decay channels, e.g. $\tau^+\tau^-$ could be employed for measurement of CP phases once it has been detected.
- Similar analysis of the NMSSM Higgs sector with explicit CP violating phases in progress.
Considerable variation in the di-photon production cross-section via the lightest MSSM Higgs due to non-vanishing CP phases

Variation also sensitive to absolute values of ν and A_f

Need for certain MSSM parameters to be measured before, particularly t_1, for concrete evidence of explicit CP-vilation

Other Higgs decay channels, e.g. $\tau^+\tau^-$ could be employed for measurement of CP phases once it has been detected

Similar analysis of the NMSSM Higgs sector with explicit CP violating phases in progress
Considerable variation in the di-photon production cross-section via the lightest MSSM Higgs due to non-vanishing CP phases

Variation also sensitive to absolute values of ν and A_f

Need for certain MSSM parameters to be measured before, particularly t_1, for concrete evidence of explicit CP-vilation

Other Higgs decay channels, e.g. $\tau^+\tau^-$ could be employed for measurement of CP phases once it has been detected

Similar analysis of the NMSSM Higgs sector with explicit CP violating phases in progress
Conclusions and Outlook

- Considerable variation in the di-photon production cross-section via the lightest MSSM Higgs due to non-vanishing CP phases
- Variation also sensitive to absolute values of ν and A_f
- Need for certain MSSM parameters to be measured before, particularly t_1, for concrete evidence of explicit CP-vilation
- Other Higgs decay channels, e.g. $\tau^+\tau^-$ could be employed for measurement of CP phases once it has been detected
- Similar analysis of the NMSSM Higgs sector with explicit CP violating phases in progress
Conclusions and Outlook

- Considerable variation in the di-photon production cross-section via the lightest MSSM Higgs due to non-vanishing CP phases.
- Variation also sensitive to absolute values of ν and A_f.
- Need for certain MSSM parameters to be measured before, particularly t_1, for concrete evidence of explicit CP-violation.
- Other Higgs decay channels, e.g. $\tau^+\tau^-$ could be employed for measurement of CP phases once it has been detected.
- Similar analysis of the NMSSM Higgs sector with explicit CP-violating phases in progress.
Considerable variation in the di-photon production cross-section via the lightest MSSM Higgs due to non-vanishing CP phases

Variation also sensitive to absolute values of ν and A_F

Need for certain MSSM parameters to be measured before, particularly t_1, for concrete evidence of explicit CP-violation

Other Higgs decay channels, e.g. $\tau^+\tau^-$ could be employed for measurement of CP phases once it has been detected

Similar analysis of the NMSSM Higgs sector with explicit CP violating phases in progress