New Strong Dynamics at the TeV Scale:
from multi-jet resonances at the Tevatron

to di-CHAMP resonances at the LHC

Takemichi Okui
(Johns Hopkins U & U of Maryland)

Based on C. Kilic, T.O, R. Sundrum, JHEP 0807:038, 2008
The worry...

The SM
Beautifully tested
No signs of new physics

Rich new physics?
tension! ⇔
The worry...

The SM

Beautifully tested
No signs of new physics

Rich new physics?

Encouraging “history”

“SM” @ $E < 100$ MeV

E [MeV]

100

Beautifully tested
No signs of new physics

0.5
e

γ

0
The worry...

The SM

Beautifully tested
No signs of new physics

Rich new physics?

Encouraging "history"

"SM" @ $E < 100$ MeV

Beautifully tested
No signs of new physics

E [MeV]

1000

100

0.5

0

e

γ

ρ

K^\pm

π^0

μ

ν

α

DRAMATIC

new physics!!

(Vectorlike confinement)

T. OKUI (JHU&UMD)
If Nature repeats itself at TeV...

- QED-QCD system -

leptons → E&M → quarks (vectorlike) → color force

- Vectorlike Confinement at TeV -

SM fermions → SM gauge int. → new fermions (vectorlike) → hyper-color force
If Nature repeats itself at TeV...

- QED-QCD system -

leptons E&M quarks (vectorlike) 4-fermion op. color force

- Vectorlike Confinement at TeV -

SM fermions SM gauge int. new fermions (vectorlike) 4-fermion op. hyper-color force

“Gauge Mediation”
Safe from flavor constraints
If Nature repeats itself at TeV...

- QED-QCD system -

leptons \[\text{E&M}\] quarks (vectorlike)

4-fermion op.

color force

"Gauge Mediation"

Safe from flavor constraints

- Vectorlike Confinement at TeV -

SM fermions \[\text{SM gauge int.}\] new fermions (vectorlike)

4-fermion op.

color force

hyper-color force

Can have mass w/o EWSB
Safe from EW precision constraints

T. OKUI (JHU&UMD)
If Nature repeats itself at TeV...

- QED-QCD system -

- Vectorlike Confinement at TeV -

4-fermion op.

leptons E&M quarks (vectorlike)

color force

SM fermions SM gauge int. new fermions (vectorlike)

hyper-color force

Confinement

Rich phenomenology

"Gauge Mediation"

Safe from flavor constraints

Can have mass w/o EWSB

Safe from EW precision constraints
If Nature repeats itself at TeV...

- QED-QCD system -

Let stable particles decay

4-fermion op.

leptons

E&M

quarks (vectorlike)

color force

“Gauge Mediation”

Safe from flavor constraints

SM fermions

SM gauge int.

new fermions (vectorlike)

4-fermion op.

hyper-color force

Confinement

Rich phenomenology

Can have mass w/o EWSB

Safe from EW precision constraints

Simple and plausible (yet pheno rich) possibility at TeV!

T. OKUI (JHU&UMD)
The Signature Process

\[\rho \rightarrow e^+e^- \sim 10^{-5} \]

\[\rho \rightarrow \pi\pi \sim 10^{-5} \]
The Signature Process

\[
\frac{\rho \rightarrow e^+e^-}{\rho \rightarrow \pi\pi} \sim 10^{-5}
\]

\[
\frac{\rho \rightarrow \pi\pi}{\rho \rightarrow e^+e^-} \sim 100 \%
\]

\[
\text{Br}(\rho \rightarrow f\bar{f}) < 1\%
\]

How does \(\tilde{\pi} \) decay?
Two fates for $\tilde{\pi}$: Life can be short or long!

π^0 short-lived! ($c\tau \sim 10$ nm)
Two fates for $\tilde{\pi}$: Life can be short or long!

Same species:

π^0 short-lived! ($c\tau \sim 10$ nm)

Different species:

$\tilde{\pi}_{\text{short}}$ short ($c\tau \sim 10$ nm)

Decays promptly!

π^0, \bar{q}, q, γ, W, Z, g

ψ, $\bar{\psi}$, γ, W, Z, g
Two fates for $\tilde{\pi}$: Life can be short or long!

π^0 short-lived! $(c\tau \sim 10 \text{ nm})$

π^0 short lived

Decays promptly!

π^+ long-lived! $(c\tau \sim 10 \text{ m})$

Need nonrenormalizable int. to change species
Two fates for $\tilde{\pi}$: Life can be short or long!

- Same species
 - π^0 short-lived! ($c\tau \sim 10\text{ nm}$)
 - $\tilde{\pi}_{\text{short}}$
 - Decays promptly!

- Different species
 - π^+ long-lived! ($c\tau \sim 10\text{ m}$)
 - $\tilde{\pi}_{\text{long}}$
 - Need nonrenormalizable int. to change species

γ, W, Z, g

$\tilde{\pi}$ long-lived in $\tilde{\text{SM}}$, species changing 4-fermion int.
Two fates for $\tilde{\pi}$: Life can be short or long!

π^0 short-lived! ($c\tau \sim 10 \text{ nm}$)

π^0 long-lived! ($c\tau \sim 10 \text{ m}$)

Need nonrenormalizable int. to change species

Absence of excessive flavor violations

\Rightarrow Stable in collider times scale!
Summary of Phenomenology

* Charged massive stable particles (CHAMPs)
* Colored massive stable particles (R-hadrons)
* (Displaced) leptoquarks, di-quarks, di-leptons
* Multi-W, Z, photon production
* Multi-jet resonances
* SUSY-like scalar spectra
* Dark matter
* Grand unification
Summary of Phenomenology

- **A** *Charged massive stable particles (CHAMPs) @LHC*
 - Colored massive stable particles (R-hadrons)
 - (Displaced) leptoquarks, di-quarks, di-leptons
 - Multi-W, Z, photon production

- **B** *Multi-jet resonances @Tevatron*
 - SUSY-like scalar spectra
 - Dark matter
 - Grand unification

- New confining force
- $\bar{q}q$, γ, W, Z, g
- ψ, ψ'
- $\tilde{\pi}_{\text{long}}$, $\tilde{\pi}_{\text{short}}$
- Stable!
Scenario A (LHC)

2 species: ψ, χ No QCD int. (Say, EW doublet and singlet)

$\tilde{\pi}_{\text{short}} = \psi, \chi$

Four W, Z, γ's from a $\tilde{\pi}_{\text{short}}$ pair!

$\tilde{\pi}_{\text{long}} = \psi, \chi$

Charged, massive & stable!

("CHAMP")

Existence very robust!

T. OKUI (JHU&UMD)
Scenario A (LHC)

2 species: ψ, χ No QCD int. (Say, EW doublet and singlet)

$\widetilde{\pi}_{\text{short}} = \psi \chi$

Four W, Z, γ's from a $\widetilde{\pi}_{\text{short}}$ pair!

$\widetilde{\pi}_{\text{long}} = \psi \chi$

Charged, massive & stable!

("CHAMP")

Existence very robust!

A CHAMP = a highly ionized, penetrating track

Spectacular collider signal!

T. OKUI (JHU&UMD)
Scenario A (LHC)

2 species: ψ, χ No QCD int. (Say, EW doublet and singlet)

$\tilde{\pi}_{\text{short}} = \psi \chi$

Charged, massive & stable!
("CHAMP")

Existence very robust!

Four W, Z, γ's from a $\tilde{\pi}_{\text{short}}$ pair!

A CHAMP = a highly ionized, penetrating track

Spectacular collider signal!

Resonant CHAMP pair production!
Can we see the parent $\tilde{\rho}$ resonance?

[fb/100 GeV]

@LHC

CHAMPs from "Drell-Yan"

$E_{\text{champ1}} + E_{\text{champ2}}$ (in c.m. frame)

Ψ_{long}

$\tilde{\pi}$

γ, W, Z

Ψ

P

\bar{q}

P

q

$\tilde{\rho}$

ρ

T. OKUI (JHU&UMD)
Can we see the parent \(\tilde{\rho} \) resonance?

@LHC

“Di-CHAMP” resonance!

CHAMPs from “Drell-Yan”

\[E_{\text{champ}1} + E_{\text{champ}2} \text{ (in c.m. frame)} \]

\(m_\rho = 2.5 \text{ TeV} \)

\(m_\rho = 4.0 \text{ TeV} \)
Can we see the parent \(\tilde{\rho} \) resonance?

@LHC

CHAMPS from "Drell-Yan"

Cross-section

\[E_{\text{champ1}} + E_{\text{champ2}} \text{ (in c.m. frame)} \]

Angular distribution shows spin-1 nature
Scenario B (Tevatron)

Only one species: ψ w/ no electroweak int. Only QCD int.

$\tilde{\pi}_{\text{short}} = \psi$

No $\tilde{\pi}_{\text{long}}$
Scenario B (Tevatron)

Only one species: ψ w/ no electroweak int. Only QCD int.

$\tilde{\pi}_{\text{short}} = \psi$

No $\tilde{\pi}_{\text{long}}$

Kinematical features:

Event rate

$\tilde{\rho}$

$E_a + E_b + E_c + E_d$

(in c.m. frame)

Event rate

$\tilde{\pi}$

$E_a + E_b$

(in a-b c.m. frame)

Event rate

$\tilde{\pi}$

$E_c + E_d$

(in c-d c.m. frame)
Scenario B (Tevatron)

Only one species: ψ w/ no electroweak int. Only QCD int.

$\tilde{\pi}_{\text{short}} = \psi$

No $\tilde{\pi}_{\text{long}}$

Kinematical features:

Event rate

$\tilde{\rho}$

$E_a + E_b + E_c + E_d$

(in c.m. frame)

Event rate

$\tilde{\pi}$

at the same mass

$E_a + E_b$

(in a-b c.m. frame)

Event rate

$E_c + E_d$

(in c-d c.m. frame)
Useful observables and cuts

\[p_T \equiv |\vec{p}_{\perp \text{beam}}| \]

\[m_{4j} \equiv E_1 + E_2 + E_3 + E_4 \quad \text{(in c.m. frame)} \]

(1) To pick out the \(\tilde{\rho} \)
Useful observables and cuts

(1) To pick out the $\tilde{\rho}$

$$m_{4j} \equiv E_1 + E_2 + E_3 + E_4 \quad \text{(in c.m. frame)}$$

(2) To pick out the two $\tilde{\pi}$'s

(i) choose 2 pairs ij and kl
(ii) calculate

$$m_{ij} \equiv E_i + E_j \quad \text{(in i-j c.m. frame)}$$

and similarly m_{kl}

(iii) minimize $\Delta m \equiv |m_{ij} - m_{kl}|$

(iv) keep event only if

$$\Delta m < 25 \text{ GeV}$$

(v) take average

$$\langle m_{2j} \rangle \equiv (m_{ij} + m_{kl}) / 2$$
Useful observables and cuts

(1) To pick out the $\tilde{\rho}$

$$m_{4j} \equiv E_1 + E_2 + E_3 + E_4 \quad (\text{in c.m. frame})$$

(2) To pick out the two $\tilde{\pi}'$s

(i) choose 2 pairs ij and kl

(ii) calculate

$$m_{ij} \equiv E_i + E_j \quad (\text{in } i-j \text{ c.m. frame})$$

and similarly m_{kl}

(iii) minimize $\Delta m \equiv |m_{ij} - m_{kl}|$

(iv) keep event only if

$$\Delta m < 25 \text{ GeV}$$

(v) take average

$$\langle m_{2j} \rangle \equiv (m_{ij} + m_{kl}) / 2$$

(3) Signal: $p_{T1} \sim p_{T2} \sim p_{T3} \sim p_{T4}$

Backgrounds: $p_{T1} \gg p_{T2} \gg p_{T3} \gg p_{T4}$

so keep event only if $p_{Ti} > p_{\text{cutoff}}$ for all 4 jets

T. OKUI (JHU&UMD)
Discovery potential for: $m_{\tilde{\rho}} = 350$ GeV

\[(m_{\tilde{\pi}} = 100 \text{ GeV}) \]

$p_{Ti} > p_{\text{cutoff}} = 40$ GeV

$\text{Min} \ |m_{ij} - m_{kl}| < 25$ GeV

$p_{T1} > 120$ GeV

(CDF single-jet trigger: $p_{T1} > 100$ GeV)

Signal: \((1 \text{ fb}^{-1}) \quad \sigma_{p\bar{p} \rightarrow \tilde{\rho}} = 110 \text{ pb} \quad (\text{pb} = 10^{-36} \text{ cm}^2) \)

Background: \((2 \text{ fb}^{-1}) \)

Signal: 2.7 pb passing selection criteria

Background: 21 pb passing criteria

T. OKUI (JHU&UMD)
Discovery potential for: $m_{\tilde{\rho}} = 350$ GeV
($m_{\tilde{\pi}} = 100$ GeV)

$p_{T1} > p_{\text{cutoff}} = 40$ GeV

Min $|m_{ij} - m_{kl}| < 25$ GeV

$p_{T1} > 120$ GeV

(CDF single-jet trigger: $p_{T1} > 100$ GeV)

Signal (1 fb$^{-1}$) $\sigma_{pp\rightarrow\tilde{\rho}} = 110$ pb
(pb = 10^{-36} cm2)

Signal: 2.7 pb passing selection criteria

Background (2 fb$^{-1}$)

Background: 21 pb passing criteria

$\sqrt{\sum_{\text{bins}} \left(\frac{S}{\sqrt{B}} \right)^2} = 32$!

Discoverable in existing Tevatron data!

T. OKUI (JHU&UMD)
Conclusions

A broad class of simple extensions of the SM:

4-fermion op.

SM fermions SM forces new fermions (vector-like) new confining force

4-fermion op.

leptons EM force quarks (vector-like) color force

* can robustly evade all existing precision constraints
* can lead to extremely rich collider phenomenology

e.g. Multi-jets resonances

Di-CHAMP resonances

In existing Tevatron data!!