Search for the SM Higgs Boson in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

Maiko Takahashi
(University of Manchester / Fermilab)
don behalf of DZero Collaboration

SUSY 2009, 5–10 June, Boston
SM Higgs Boson Search at DØ

- **DØ Experiment at Tevatron**
 - pp collisions @\(\sqrt{s} = 1.96\)TeV
 - 6fb\(^{-1}\) recorded by DØ (last week!)
 - Higgs searches presented today using up to 4.2fb\(^{-1}\) of data

- **Standard Model (SM) Higgs boson searches performed at DØ**
 - Low Mass: \(H \rightarrow bb, H \rightarrow \tau\tau, H \rightarrow \gamma\gamma\)
 → mostly with associated production (WH, ZH, ...) for additional signature
 - High Mass: \(H \rightarrow WW\)
 → powerful inclusive search + exclusive WH analysis in intermediate mass range
\[\text{WH} \rightarrow l\nu \text{ bb} \] (1)

- **1 e/\mu + 2 b-jets + \text{E}_{T}^{\text{miss}}**
 - Increased signals acceptance
 - include forward e, multiple \(\mu \) triggers
 - SM background (\(W+\text{jets}, Wb\,\ldots \)) using MC, multijet contribution estimated from data

- **Split analysis** into \([e/\mu] \times [2/3 \text{jets}] \times [1/2 \text{b-tagged jet}]\) samples

Preselection

After b-tagging

SUSY2009

Maiko Takahashi
WH → lv bb (2)

- Signal–Background discriminant using Neural Net
 - Trained on kinematic variables and Matrix Element discriminant
 - Additional +8% gain in sensitivity from ME
- Signal significance
 - Up to 1/100 after b-tagging → up to 1/10 in high NN region
ZH → ll bb

- $ee/\mu\mu + 2$ b-jets with constraint on di-lepton from Z mass
 - Increased lepton acceptance
 - electrons in previously non-fiducial region using dedicated algorithm
 - central track-only muons (not enough hits in muon system)
 - improvement equivalent to 15% increase in luminosity

Graphs:
- DØ Run II Preliminary (3.1 fb$^{-1}$)
 - Data, Z+jets, Z+HF, Top, Diboson, Multijet
 - $\mu+\mu$ ≥ 2 jets
- DØ Run II Preliminary (4.2 fb$^{-1}$)
 - Data, Z+jets, Z+HF, Top, Diboson, Multijet
 - $\mu+trk$ ≥ 2 jets
ZH \rightarrow ll bb

- Kinematic fit in ll-bb system
 - All final states reconstructed \rightarrow no missing component
 - constrain M_{ee} to Z mass
 - transverse momentum conservation of ll-bb system
 \rightarrow improve di-jet mass resolution by 4%, final sensitivity by 8%

- Boosted Decision Tree for final discriminants

Maiko Takahashi
SUSY2009
ZH → vv bb

- 2 b-jets + large E_T^{miss} (lepton veto)
 - Data dominated by $V_{+}\text{jets}$ and multijets
- Electroweak enriched control sample
 - Invert muon veto → same event topology
 - Check trigger parametrisation and normalisation of MC

Analysis Sample (pre b-tag)

EW Control Sample (pre b-tag)
ZH → νν bb

- Multijet with E_T^{miss} from mis-measured jet
 - Symmetric in $\Delta \phi (E_T^{\text{miss}}, p_{T\text{trk}}^{\text{miss}})$
 - \rightarrow use $\Delta \phi > \pi/2$ to model multijet
- Set of cuts based on jet-E_T^{miss} kinematics

- Boosted Decision Tree trained against SM backgrounds
 - $1/2$ of signal contributions from WH with undetected lepton
Higgs channels with τ leptons

- H → ττ has 2nd highest branching ratio at $M_H = 115\text{GeV}$
- VH channels miss out a sizable fraction to $W \rightarrow \tau\nu$ and $Z \rightarrow \tau\tau$

WH → τ_{had}ν bb

- Strategies similar to $ZH \rightarrow \nu\nu\tau\tau$
- Good hadronic τ ID important

HX → τ_{had}τ_{μ} jj (no b-tag)

- Include many channels:
 - $qqH \ (H \rightarrow \tau\tau)$, $ZH \ (Z \rightarrow \tau\tau, H \rightarrow bb)$,
 - $VH \ (V \rightarrow qq, H \rightarrow \tau\tau)$

Maiko Takahashi

SUSY2009
- Inclusive search for $\gamma\gamma$ resonance
 - Large background from direct $\gamma\gamma$
- Photon identification
 - Dedicated Neural Net trained with $Z \rightarrow ll\gamma$ data

- Background estimate from data
 - First estimate $\gamma^*/Z \rightarrow ee, \gamma+\text{jet}/\text{di-jet}$ and subtract from data
 - Side band fit to $M_{\gamma\gamma}$ for real $\gamma\gamma$
- Look for a narrow resonance over $\gamma\gamma$ continuum
Like-charged lepton pair (ee/\(e\mu/\mu\mu\)) + \(E_T^{\text{miss}}\)

- Like-charge → large reduction of SM bkgd.
- Instrumental background from multijet and \(Z \rightarrow l^+l^-\) due to charge mis-identification
 → estimated from data

Likelihood discriminant to combine few variables
$H \rightarrow WW$ (1)

- $ee/e\mu/\mu\mu$ (oppositely charged) + E_T^{miss}
 - Clean di-lepton signature
 - Inclusive signal search
- Large SM backgrounds
 - Dominant γ^*/Z and irreducible non-resonant WW
Cut Based Initial Selection

- E_T^{miss} and minimal $M_T(l, E_T^{\text{miss}})$ against $Z(\pm \text{jets})$ background
- $\Delta \phi(l,l)$ from the difference in spin correlation
 → powerful against all backgrounds including irreducible WW

Neural Network

- Input variables based on lepton kinematics & event topology

At high NN region,

$S/B \sim 1/3$
Uncertainties

- **Systematic uncertainties**
 - Affect normalisation + shape of the background expectation
 - Included in the calculation of Higgs cross section limit

- **Dominant uncertainties**
 - Low mass searches ($H \rightarrow bb$): total uncertainty ~ 30
 - b-tagging efficiency
 - Jet energy scale
 - V+jet & Heavy Flavor modeling
 - High mass searches ($H \rightarrow WW$): total uncertainty ~ 10
 - Theoretical cross section
 - Lepton efficiency
DØ Combined Limits

- Upper limits on Higgs cross section (as a ratio to SM expectation)
 - Last DØ combination for SM Higgs searches in March ’09
 - @115GeV: up to 6.7 (obs) with single channel → 3.7 (obs) combined
 - @165GeV: dominated by H→WW result, 1.3 (obs) limit
Conclusions & Outlook

- **SM Higgs search at DØ**
 - Covers many channels across the Higgs mass range
 - Improving results by increasing signal acceptance and using sophisticated analysis tools
 - Reaching the sensitivity to SM Higgs production cross section

- **Current Tevatron (CDF+DØ) combined limits exclude SM Higgs with $M_H = 160-170$GeV**

- **New results later this summer**
 - Increased dataset (up to $>5fb^{-1}$)
 - Many improvements already in place
 - Expect further exclusion of SM Higgs boson in high mass range + competitive limits in low mass
Back Up

back up
Cross Section Limits

- Set upper limits to the Higgs production cross section
 - Fit discriminant distributions using background (+ signal) expectation with Gaussian uncertainty

- Results from individual channel included in the DØ combination

<table>
<thead>
<tr>
<th>Production</th>
<th>Decay</th>
<th>Luminosity [fb⁻¹]</th>
<th>Limit (@M_H in GeV) exp / obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH</td>
<td>lv bb</td>
<td>2.7</td>
<td>6.4 / 6.7 (115)</td>
</tr>
<tr>
<td>ZH</td>
<td>ll bb</td>
<td>4.2</td>
<td>8.9 / 9.1 (115)</td>
</tr>
<tr>
<td>Z(W)H</td>
<td>vv bb</td>
<td>2.1</td>
<td>8.4 / 7.5 (115)</td>
</tr>
<tr>
<td>Inclusive</td>
<td>τ + jets</td>
<td>0.9 - 1.0</td>
<td>28 / 29 (115)</td>
</tr>
<tr>
<td>ttH</td>
<td>tt bb</td>
<td>2.1</td>
<td>45/ 64 (115)</td>
</tr>
<tr>
<td>Inclusive</td>
<td>γγ</td>
<td>4.2</td>
<td>17.5 / 13.1 (120)</td>
</tr>
<tr>
<td>WH</td>
<td>W WW → l±l± X</td>
<td>3.6</td>
<td>10.7 / 18.4 (160)</td>
</tr>
<tr>
<td>Inclusive</td>
<td>WW → ll</td>
<td>4.2</td>
<td>1.7 / 1.3 (165)</td>
</tr>
</tbody>
</table>

Expected and Observed limits (ratio to SM) at best mass
Analysis Tools and Strategies

- **Improving object identification (ID)**
 - Sophisticated Neural Net b-jet tagging
 - New dedicated electron ID in Inter-Cryostat Region (ICR)

- **Increasing signal acceptance**
 - Looser cuts (e.g. central track only μ)
 - Wider coverage (e.g. ICR electrons)

- **Splitting into sub-channels**
 - Lepton flavour, # jets, b-tag operating pnt, ...

- **Multivariate techniques**
 - Likelihood, NN, BDT etc. to combine multiple kinematic variables
 - Matrix Element calculation from final state 4-vectors
DØ Combined Limits

- Log Likelihood Ratio

![Graph showing Log Likelihood Ratio](image)

SM Higgs Combination
DØ Preliminary, L=0.9-4.2 fb⁻¹

March 5, 2009

100 110 120 130 140 150 160 170 180 190 200

m_H (GeV/c²)