SUSY-QCD CORRECTIONS TO DARK MATTER ANNIHILATIONS

Karol Kovařík

Laboratoire de Physique Subatomique et de Cosmologie
Grenoble, France

in collaboration with B. Herrmann and M. Klasen

SUSY09, 5 June-10 June 2009
1. Motivation
2. Annihilation to quarks
3. SUSY-QCD radiative corrections
4. Numerical results
5. Conclusions & Outlook
Motivation for Dark Matter

- **First observational hints**
 - Velocity dispersion and rotation curves

 [Zwicky 1933, Rubin et al. 1970]

- **CMB anisotropies**
 - Cosmological parameters from WMAP mission

 [Komatsu et al. (WMAP) 2008]

 \[\Omega_{\text{tot}} = 1.005 \pm 0.034 \]
 \[\Omega_{\text{CDM}} = 0.223 \pm 0.013 \]

- **Structure formation**
 - Cold dark matter needed to explain large structures

 [Blumenthal et al. 1984]
Motivation for precision calculations

Ultimate goal - consistency test between Cosmology & Beyond the SM physics

→ experimental cosmology gets more precise COBE-WMAP-Planck
→ before the start of LHC cosmology provides constraints

COBE 1989

WMAP 2002
Ultimate goal - consistency test between Cosmology & Beyond the SM physics

Experimental cosmology gets more precise COBE-WMAP-Planck

Before the start of LHC cosmology provides constraints COBE 1989 WMAP 2002

Motivation for precision calculations
Motivation for precision calculations

Ultimate goal - consistency test between Cosmology & Beyond the SM physics
- experimental cosmology gets more precise COBE-WMAP-Planck
- before the start of LHC cosmology provides constraints

![COBE 1989](image1)
![WMAP 2002](image2)
![Planck 20??](image3)

Planck satellite will deliver new cosmological data in near future
- more precise theoretical predictions needed to match experimental improvements
Motivation for precision calculations

Ultimate goal - consistency test between Cosmology & Beyond the SM physics

→ experimental cosmology gets more precise COBE-WMAP-Planck
→ before the start of LHC cosmology provides constraints

Planck satellite will deliver new cosmological data in near future

→ more precise theoretical predictions needed to match experimental improvements

Higher order corrections can have important contributions to cross sections

→ QCD corrections significant due to strong coupling constant
→ modification of preferred regions in parameter space
Dark Matter & SUSY

Dark matter relic density required to agree with WMAP+SN+BAO data

\[0.1097 \leq \Omega_{\text{CDM}} h^2 \leq 0.1165 \]

[Hinshaw et al. 2008]
Dark Matter & SUSY

Dark matter relic density required to agree with WMAP+SN+BAO data

\[0.1097 \leq \Omega_{\text{CDM}} h^2 \leq 0.1165 \]

[Hinshaw et al. 2008]

Number density of relic particle governed by the Boltzmann equation

\[
\frac{dn}{dt} = -3Hn - \langle \sigma_{\text{ann}} v \rangle (n^2 - n_{\text{eq}}^2) \quad \Omega_{\text{CDM}} h^2 \propto n \propto \frac{1}{\langle \sigma_{\text{ann}} v \rangle}
\]

Thermal average involves velocity distribution of the relic particle

\[
\langle \sigma_{\text{ann}} v \rangle = \int dv \tilde{f}(v)\sigma_{\text{ann}} v = \int ds f(s)\sigma_{\text{ann}}(s)
\]

Cross section \(\sigma_{\text{ann}} \) includes all annihilation and co-annihilation processes
Dark Matter & SUSY

Dark matter relic density required to agree with WMAP+SN+BAO data

\[0.1097 \leq \Omega_{\text{CDM}} h^2 \leq 0.1165 \]

[Hinshaw et al. 2008]

Number density of relic particle governed by the Boltzmann equation

\[\frac{dn}{dt} = -3H n - \langle \sigma_{\text{ann}} v \rangle \left(n^2 - n_{\text{eq}}^2 \right) \]

\[\Omega_{\text{CDM}} h^2 \propto n \propto \frac{1}{\langle \sigma_{\text{ann}} v \rangle} \]

Thermal average involves velocity distribution of the relic particle

\[\langle \sigma_{\text{ann}} v \rangle = \int dv \tilde{f}(v) \sigma_{\text{ann}} v = \int ds f(s) \sigma_{\text{ann}}(s) \]

Cross section \(\sigma_{\text{ann}} \) includes all annihilation and co-annihilation processes

Public codes perform a calculation of the relic density for given scenario

\[\rightarrow \text{DarkSUSY (only neutralino)} \quad \rightarrow \text{micrOMEGAs (all kinds of LSP)} \]

[Gondolo et al. 2004] [Bélanger et al. 2006]
Annihilation into quarks

- Cross section includes s-channel Z-boson & Higgs boson, t & u-channel squark exchange

\[\sigma \nu = a + bv^2 + \mathcal{O}(v^4) \]

- Annihilation into light quarks (all except top) *always kinematically allowed*
 → dominant for light neutralino

Karol Kovařík (LPSC Grenoble)
Annihilation into quarks

- Cross section includes s-channel Z-boson & Higgs boson, t & u-channel squark exchange

- Annihilation into light quarks (all except top) always kinematically allowed → dominant for light neutralino

- Non-relativistic limit of annihilation cross-section

 \[\sigma v = a + b v^2 + \mathcal{O}(v^4) \]

- Leading coefficient in annihilation to quarks proportional to the mass of the quark
 → light quarks of 1st & 2nd generation suppressed
 → top quark final states dominant if allowed
Annihilation into quarks

Cross section includes s-channel Z-boson & Higgs boson, t & u-channel squark exchange

\[\sigma v = a + bv^2 + O(v^4) \]

Annihilation into light quarks (all except top) always kinematically allowed → dominant for light neutralino

Leading coefficient in annihilation to quarks proportional to the mass of the quark
→ light quarks of 1st & 2nd generation suppressed
→ top quark final states dominant if allowed

Different scenarios lead to different dominant contributions
→ mSUGRA - Higgs exchange dominates & \(\tan \beta \) important parameter
→ no gaugino unification - Z-boson or squark exchange dominate
Annihilation into quarks in mSUGRA

Contribution of quark final states in mSUGRA $m_0-m_{1/2}$ planes

- $\tan\beta=10, A_0=-1500$ GeV, $\mu>0$
- $\tan\beta=50, A_0=0$, $\mu>0$

Karol Kovařík (LPSC Grenoble) SUSY09 7 June 2009
Annihilation into quarks in mSUGRA

Contribution of quark final states in mSUGRA m$_0$-m$_{1/2}$ planes

- **tanβ=10, A$_0$=-1500 GeV, μ>0**
 - Crossed areas indicate no EWSB
 - Levels of 80%, 60%, 40%, 30%, and 10% are shown
 - $b\rightarrow s\gamma$ transitions are marked

- **tanβ=50, A$_0$=0, μ>0**
 - Crossed areas indicate no EWSB
 - Levels of 80% and 60% are shown

Interesting regions:
- Focus point region (tt dominated)
- Bulk & A-funnel region (bb dominated)

Karol Kovařík (LPSC Grenoble)
SUSY09
7 June 2009
Annihilation into quarks beyond mSUGRA

- Relax \textit{GAUGINO MASS UNIFICATION} - compatible with gauge coupling unification

- Parameters M_1, M_2, M_3 independent at GUT scale

\[x_1 = \frac{M_1}{M_2}, \quad x_3 = \frac{M_3}{M_2} \]
Annihilation into quarks beyond mSUGRA

- Relax GAUGINO MASS UNIFICATION - compatible with gauge coupling unification

- Parameters M_1, M_2, M_3 independent at GUT scale

\[
x_1 = \frac{M_1}{M_2} \quad \quad x_3 = \frac{M_3}{M_2}
\]

- Gluino parameter M_3 very influential
 - decrease in $M_3 \rightarrow$ decrease in M_{Hu} and squark masses
 - low $M_{Hu} \rightarrow$ low $\mu \rightarrow$ larger higgsino fraction of $\tilde{\chi}_1^0$
Annihilation into quarks beyond mSUGRA

- Relax GAUGINO MASS UNIFICATION - compatible with gauge coupling unification

- Parameters M_1, M_2, M_3 independent at GUT scale

 $$x_1 = \frac{M_1}{M_2}, \quad x_3 = \frac{M_3}{M_2}$$

- Gluino parameter M_3 very influential
 - decrease in $M_3 \rightarrow$ decrease in M_{H_u} and squark masses
 - low $M_{H_u} \rightarrow$ low $\mu \rightarrow$ larger higgsino fraction of $\tilde{\chi}_1^0$

- First scenario - small squark masses & low $\tan\beta \rightarrow$ squark exchange

 [S.Martin 2007]
Annihilation into quarks beyond mSUGRA

- Relax **Gaugino Mass Unification** - compatible with gauge coupling unification

- Parameters M_1, M_2, M_3 independent at GUT scale

 \[x_1 = \frac{M_1}{M_2}, \quad x_3 = \frac{M_3}{M_2} \]

- Gluino parameter M_3 very influential
 - decrease in $M_3 \rightarrow$ decrease in M_{Hu} and **squark masses**
 - low $M_{\text{Hu}} \rightarrow$ low $\mu \rightarrow$ larger higgsino fraction of $\tilde{\chi}_1^0$

- **First scenario** - small squark masses $\&$ low $\tan \beta \rightarrow$ squark exchange

 [S. Martin 2007]

- **Second scenario** - large higgsino component of $\tilde{\chi}_1^0 \rightarrow Z$ exchange

 [Bertin, Nezri, Orloff 2002]
SUSY-QCD corrections

Virtual loop corrections: On-shell renormalization

Real emission corrections: Dipole subtraction method

Karol Kovařík (LPSC Grenoble) SUSY09 7 June 2009
Virtual loop corrections:
- loops are calculated in $\overline{\text{DR}}$ regularization scheme
- UV divergence removed by On-shell renormalization

Real corrections:
- $\overline{\text{DR}}$ regularization scheme for IR divergence in loops & gluon radiation - poles
- Dipole subtraction method combines virtual & real part - cancel IR divergence

\[
\sigma_{1\text{-loop}} = \left[\sigma_V + \int d\sigma_{\text{aux}} \right]_{\varepsilon=0} + \int \left[d\sigma_R - d\sigma_{\text{aux}} \right]_{\varepsilon=0}
\]
Virtual loop corrections:

→ loops are calculated in $\overline{\text{DR}}$ regularization scheme
→ UV divergence removed by On-shell renormalization

Real corrections:

→ $\overline{\text{DR}}$ regularization scheme for IR divergence in loops & gluon radiation - poles
→ Dipole subtraction method combines virtual & real part - cancel IR divergence

\[
\sigma_{1-\text{loop}} = \left[\sigma_V + \int d\sigma_{\text{aux}} \right]_{\varepsilon=0} + \int \left[d\sigma_R - d\sigma_{\text{aux}} \right]_{\varepsilon=0}
\]

Higgs exchange & Yukawa couplings

→ Higgs resonances lead to enhanced annihilation cross-section & correct relic density
→ Higgs boson decays to fermions well known
→ QCD corrections up to $O(\alpha_s^4)$ included
→ SUSY-QCD corrections to bottom Yukawa coupling known to be important for large $\tan\beta$
Numerical results - mSUGRA

- mSUGRA parameter values:
 \(m_0 = 1500 \text{ GeV}, \quad m_{1/2} = 130 \text{ GeV} \)
 \(\tan \beta = 10, \quad A_0 = -1500 \text{ GeV}, \quad \text{sgn} \, \mu = + \)

- Relic density:
 \(\Omega h^2 = 0.116, \quad \bar{\text{bb}} = 86\% \)
Numerical results - mSUGRA

- **mSUGRA parameter values:**

 \[\begin{align*}
 m_0 &= 1500 \text{ GeV}, \\
 m_{1/2} &= 130 \text{ GeV} \\
 \tan \beta &= 10, \\
 A_0 &= -1500 \text{ GeV}, \\
 \text{sgn} \mu &= +
 \end{align*} \]

- **Relic density:**

 \[\Omega h^2 = 0.116, \quad \bar{b}b = 86\% \]
Numerical results - mSUGRA

- mSUGRA parameter values:
 \[m_0 = 5300 \text{ GeV}, \ m_{1/2} = 625 \text{ GeV} \]
 \[\tan \beta = 10, \ A_0 = -1500 \text{ GeV}, \ \text{sgn} \ \mu = + \]

- Relic density:
 \[\Omega h^2 = 0.110, \ \bar{\tau} t = 72\% \]
Numerical results - mSUGRA

mSUGRA parameter values:
- $m_0 = 5300$ GeV, $m_{1/2} = 625$ GeV
- $\tan\beta = 10$, $A_0 = -1500$ GeV, $\text{sgn} \mu = +$

Relic density:
- $\Omega h^2 = 0.110$, $\tilde{t} \tilde{t} = 72\%$
Parameter values:

- $m_0 = 320 \text{ GeV}$, $M_2 = 700 \text{ GeV}$, $x_1 = 2/3$, $x_3 = 1/3$
- $\tan\beta = 10$, $A_0 = -350$, $\text{sgn}\,\mu = +$

Relic density:

- $\Omega h^2 = 0.114$, $\bar{t}t = 79\%$
Numerical results - beyond mSUGRA

- **Parameter values:**
 \[m_0 = 320 \text{ GeV}, \quad M_2 = 700 \text{ GeV}, \quad x_1 = 2/3, \quad x_3 = 1/3 \]
 \[\tan \beta = 10, \quad A_0 = -350, \quad \text{sgn} \mu = + \]

- **Relic density:**
 \[\Omega h^2 = 0.114, \quad \bar{\tau} \tau = 79\% \]
Parameter values:

- $m_0 = 1500$ GeV, $M_2 = 600$ GeV, $x_1 = 1$, $x_3 = 4/9$
- $\tan\beta = 10$, $A_0 = 0$, $\text{sgn} \, \mu = +$

Relic density:

- $\Omega h^2 = 0.104$, $\bar{\tau} \tau = 50\%$
Numerical results - beyond mSUGRA

Parameter values:

\[m_0 = 1500 \text{ GeV}, \ M_2 = 600 \text{ GeV}, \ x_1 = 1, \ x_3 = 4/9 \]
\[\tan\beta = 10, \ A_0 = 0, \ \text{sgn} \mu = + \]

Relic density:

\[\Omega h^2 = 0.104, \ \bar{\tau}t = 50\% \]
Conclusions

Higher-order corrections relevant for constraining SUSY parameter space using dark matter data

SUSY-QCD corrections to neutralino annihilation to bottom & top quarks ~ 20-30%

For analysis with precision of a few %
- include full EW corrections to ALL processes
- study Spectrum code differences & improve