Recent CP Violation Results from DØ

Derek A. Strom
Northwestern University

on behalf of the DØ Collaboration

SUSY – Boston, MA – June 6, 2009
The DØ Detector

The B_s^0 Meson System

Recent CP Violation Results from DØ:

- Flavor-tagged angular analysis in $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decays
- New C.L. contours: adjustments to likelihood value, systematic uncertainties, and constraints from:
 - W.A. value of flavor-specific asymmetry of semileptonic B_s^0 decays
 - W.A. value of flavor-specific B_s^0 lifetime
 - DØ measurement of $\mathcal{B}(B_s^0 \rightarrow D_s^{(*)}+D_s^{(*)}-)$

Conclusions
The DØ Detector

- Tracker
 - Excellent coverage $|\eta| < 3$
 - 2T solenoid
 - precision secondary vertexing
 - New Layer 0 silicon close to beam pipe

- Muon system
 - Coverage and triggering $|\eta| < 2$
 - Toroid magnet

- Regular polarity flip of both magnets
 - Reduces detector asymmetries
$B_s^0 - \bar{B}_s^0$ mixing governed by the Schrödinger equation

$$i \frac{\partial}{\partial t} \left(\begin{array}{c} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{array} \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\begin{array}{c} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{array} \right)$$

Unique window into difference between matter and antimatter

Mass eigenstates B_s^L and B_s^H are admixtures of the flavor eigenstates:

Light: $|B_s^L\rangle = p|B_s^0\rangle - q|\bar{B}_s^0\rangle = |B_s^{even}\rangle$ \hspace{1cm} $|p|^2 + |q|^2 = 1$

Heavy: $|B_s^H\rangle = p|B_s^0\rangle + q|\bar{B}_s^0\rangle = |B_s^{odd}\rangle$ \hspace{1cm} if CP is conserved, $p = q$

Quantities measured experimentally:

$\Delta m_s \equiv M_H - M_L \approx 2|M_{12}|$ \hspace{1cm} Mixing frequency ($\Delta m_s^{meas.} = 17.77 \pm 0.12$ ps$^{-1}$)

$\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}| \cos \phi_s$ \hspace{1cm} Width difference ($\Delta \Gamma_s^{SM} = 0.096 \pm 0.039$ ps$^{-1}$)

$\phi_s = \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right)$ \hspace{1cm} CPV weak phase ($\phi_s^{SM} = 0.004$)

$\Gamma_s = \frac{\Gamma_L + \Gamma_H}{2}$; \hspace{1cm} $\bar{\tau} = \frac{1}{\Gamma_s}$ \hspace{1cm} Average width and lifetime
CPV-phase in $B_s^0 \rightarrow J/\psi\phi$

- B_s^0 mixing:
 \[
 \begin{array}{c|ccc|c}
 s & V_s & W^- & V_{sb} & b \\
 \hline
 b & V_{bs}^* & W^+ & V_{bs}^* & s \\
 \end{array}
 \]

- B_s^0 decays:
 \[
 \begin{array}{c|c|c}
 s & \phi & J/\psi \\
 \hline
 \bar{s} & \bar{c} & J/\psi \\
 \end{array}
 \]

- Direct decay \iff Interference \iff Decay through mixing

- SM prediction of CPV mixing phase in $B_s^0 \rightarrow J/\psi\phi$:
 \[
 \phi_{J/\psi\phi,SM}^s \equiv -2\beta_{J/\psi\phi,SM}^s = -0.04 \pm 0.01
 \]

- New physics may alter the phase ($\phi_{J/\psi\phi,NP}^s$) such that:
 \[
 \phi_{J/\psi\phi}^s = \phi_{J/\psi\phi,SM}^s + \phi_{J/\psi\phi,NP}^s
 \]

- A significantly large observed phase ($\phi_{J/\psi\phi}^s \approx \phi_{J/\psi\phi,NP}^s$) would indicate new physics
Most direct and precise measurements of $\Delta \Gamma_s$ and ϕ_s come from the Tevatron

- $B_s^0 \rightarrow J/\psi \phi$ provides a rich decay mode for studies: lifetime, decay width difference, and CP-violating phase

- Pseudoscalar ($S=0$) \rightarrow Vector ($S=1$) + Vector ($S=1$) ($L = 0, 1, 2...$ S, P, D waves)
 - $L=0$ (S wave), 2 (D wave): CP-even B^0_L
 - $L=1$ (P wave): CP-odd B^0_H

- Fit to time-dependent angular distributions of $B_s^0 \rightarrow J/\psi \phi$ allows separation of CP—even and CP—odd components

- Initial state flavor tag improves sensitivity

- For angular analysis, work in the J/ψ (θ, ϕ) and ϕ (ψ) rest frames
Flavor Tagging

- Flavor tagging uses the combined properties of the B hadron opposite to the reconstructed B^0_s meson (OST) and the properties accompanying the reconstructed B^0_s meson (SST).

- These properties should have different distributions for B^0_s and \bar{B}^0_s.

Combined Tag (OST + SST)
$\mathcal{P} \approx 4.7\%$
Reconstruct $B_s^0 \rightarrow J/\psi (\mu^+ \mu^-) \phi (K^+ K^-)$ decay chain

1967 ± 65 B_s^0 signal candidates in 2.8 fb$^{-1}$ data sample

Use a maximum likelihood fit to mass, lifetime, 3 decay angles

Δm_s fixed to measured value and strong phases constrained to values measured for B_d at B-factories, allowing for some degree of violation of SU(3) symmetry

B_s^0 flavor at production determined using opposite-side + same-side tagging
Constraint on strong phases, δ_i

Results (PRL 101 241801 (2008)):

\[
\phi_s^{J/\psi \phi} = -0.57^{+0.24}_{-0.30} \text{ (stat)}^{+0.07}_{-0.02} \text{ (syst)} \text{ rad} \quad \text{SM p-value} = 6.6\% \\
\Delta \Gamma_s = 0.19 \pm 0.07 \text{ (stat)}^{+0.02}_{-0.01} \text{ (syst)} \text{ ps}^{-1} \\
\bar{\tau}(B_s^0) = 1.52 \pm 0.05 \pm 0.01 \text{ ps}
\]
The $\phi_s^{J/\psi\phi}(−2\beta_s)$ vs. $\Delta\Gamma_s$ contour from DØ as of winter 2008 has been presented.

Now we’ll see updated contours taking into account:

- Releasing the constraint on the strong phases, δ_i
- Making adjustments for non-Gaussian uncertainties in the DØ fit parameters and including systematic uncertainties
- Constraint from the W.A. flavor-specific asymmetry in B^0_s semileptonic decays
- Constraint from W.A. flavor-specific B^0_s lifetime
- Constraint from the DØ measurement of $\mathcal{B}(B^0_s \to D^*_s + D^*_s)$

New Physics?
Adjusting for non-Gaussian Behavior

- Ideally, with high statistics and Gaussian behavior, the 2D 68% (95%) C.L. regions correspond to the 2.3 (6) slices of the likelihood profile.

- The DØ result has non-Gaussian behavior of the uncertainties on the fit parameters.

- We correct for non-Gaussian behavior of the uncertainties on the fit parameters using pseudo-experiments to map between C.L. and $2\Delta\log(L)$ (e.g. 95% needs to go up to 8 instead of 6).

- 2000 MC pseudo-experiments generated to determine the statistical coverage.

- Likelihood value at each point in $J/\psi \phi$ vs. $\Delta \Gamma_s$ space is adjusted.

- Allows for combination with CDF results.

![Graph showing the relationship between $2\Delta\log(L)$ and $(1 - C.L.)$]

C.L. value corresponding to a given likelihood ratio value in the 2D likelihood scan.
Some systematic uncertainties (i.e. signal and background models) are included as nuisance parameters in the fit.

Largest effect is the inclusion of the uncertainty on $\Delta m_s = 17.77 \pm 0.12$ ps$^{-1}$.

Effects of the systematics are studied by varying these parameters by $\pm 1\sigma$.

Most conservative value is used, i.e. the largest value of $(1 - CL)$ for a given likelihood ratio.
Adjusted Likelihood Profile in $\phi_s^{J/\psi \phi}$ vs. $\Delta \Gamma_s$ Contours

No constraint on strong phases, δ_i

SM p-value = 8.5%

SM p-value = 24%

- From publications PRL 101 241801 (2008), DØ Note 5933-CONF
Applying Additional Constraints

- Use other measurements to supply additional constraints on $\phi_{J/\psi}^s$ vs. $\Delta \Gamma_s$

- Flavor-specific Semileptonic Asymmetry
 \[A_{SL}^s = \frac{N(\bar{B}_s^0(t) \to \ell^+ \nu_\ell X) - N(B_s^0(t) \to \ell^- \bar{\nu}_\ell X)}{N(\bar{B}_s^0(t) \to \ell^+ \nu_\ell X) + N(B_s^0(t) \to \ell^- \bar{\nu}_\ell X)} = \frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s \]

- Fix Δm_s to measured value and constrain $\Delta \Gamma_s \tan \phi_s$

- $A_{SL}^{s, HF AG} = -0.0027 \pm 0.0066$

- Flavor-specific B_s^0 Lifetime
 \[\tau(B_s^0)^{fs} = \frac{1}{\Gamma_s} \frac{1 + (\frac{\Delta \Gamma_s}{2 \Gamma_s})^2}{1 - (\frac{\Delta \Gamma_s}{2 \Gamma_s})^2} \]

- $\tau(B_s^0)^{WA} = 1.456 \pm 0.030$ ps

- Branching Fraction $\mathcal{B}(B_s^0 \to D_s^{(*)+} D_s^{(*)-})$
 \[2\mathcal{B}(B_s^0 \to D_s^{(*)+} D_s^{(*)-}) \approx \frac{\Delta \Gamma_s}{\Gamma_s \cos \phi_s} \left[\frac{1}{1 - 2x_f} - \frac{\Delta \Gamma_s \cos \phi_s}{2 \Gamma_s} \right] \]

- DØ measurement using 2.8 fb^{-1}, $\mathcal{B}(B_s^0 \to D_s^{(*)+} D_s^{(*)-}) = 0.035 \pm 0.015$
CP Violation in Semileptonic B_s^0 Decays

- New search for CP Violation in semileptonic $B_s^0 \rightarrow \mu^+ D_s^- X$

- Similar technique to B_s^0 oscillation analysis (PRL 97, 021802, 2006), modified to include CPV and detector asymmetries

- Flavor Tagging
 - Production: Opposite-side
 - Decay: Muon charge

$A_{SL} = -0.0017 \pm 0.0091^{+0.0012}_{-0.0023}$

- Final state samples (5 fb^{-1}):
 - $\mu^+ \phi \pi^-$ where $\phi \rightarrow K^+ K^-$

- $\mu^+ \phi \pi^-$ where $\phi \rightarrow K^+ K^-$

- DØ magnets flipped regularly; control and measure detector asymmetries

- arXiv.org:0904.3907, submitted to PRL
Constraint from Flavor-Specific Semileptonic Asymmetry

- \(\mathcal{A}_{SL}^{s} = \frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s \)
- \(\mathcal{A}_{SL}^{s, HF AG} = -0.0027 \pm 0.0066 \)
- With the constraint to the WA value of \(\mathcal{A}_{SL}^{s} \) we get the following C.L. contours
- SM p-value = 24%

![Diagram showing constraint and contours](image)
Constraint from Flavor-Specific B^0_s Lifetime and $\mathcal{B}(B^0_s \rightarrow D_s^{(*)}+D_s^{(*)}-)$

$$\tau(B^0_s)_{f_s} = \frac{1}{\Gamma_s} \frac{1 + (\frac{\Delta \Gamma_s}{2 \Gamma_s})^2}{1 - (\frac{\Delta \Gamma_s}{2 \Gamma_s})^2}$$

$$\tau(B^0_s)^{WA}_{f_s} = 1.456 \pm 0.030 \text{ ps}$$

$$2\mathcal{B}(B^0_s \rightarrow D_s^{(*)}+D_s^{(*)}-) = 0.035 \pm 0.015$$

PRL 102 091801 (2009)

- World average value of B^0_s flavor-specific lifetime
- p-value of SM point = 12%
- p-value of SM point = 10%
Conclusions

- DØ’s most recent results on CPV include new C.L. contours taking into account adjustments for non-Gaussian uncertainties from the fit, systematic uncertainties, and constraints from independent measurements.

- Results shown here with the 2.8 - 5.0 fb\(^{-1}\) data sample, but 6 fb\(^{-1}\) already on tape and ready to be analyzed.

- Expect 8 fb\(^{-1}\) by the end of Run 2 in 2010 and possibly 10 fb\(^{-1}\) by the end of 2011.

- If \(\phi_{J/\psi}\) is large the Tevatron has an excellent chance at finding New Physics.

- Updated analyses expected soon. Stay tuned!
Constraints to the Fit

- Δm_s is constrained to the CDF measured value:
 \[
 \Delta m_s = 17.77 \pm 0.12 \text{ ps}^{-1} \quad \text{PRL 97, 242003 (2006)}
 \]

- A two-fold ambiguity remains in the fit:
 \[
 \begin{align*}
 \Delta \Gamma_s &> 0, & \cos \phi_s &> 0, & \cos \delta_1 &> 0, & \cos \delta_2 &< 0 \\
 \Delta \Gamma_s &< 0, & \cos \phi_s &< 0, & \cos \delta_1 &< 0, & \cos \delta_2 &> 0
 \end{align*}
 \]

- δ_1 and δ_2 were measured at the B factories in $B_d^0 \to J/\psi K^*$ decays [arXiv:0704.0522]. The solution with $\delta_1 < 0, \delta_2 > 0$ is experimentally and theoretically favored

- δ_1 and δ_2 are constrained to the world average values measured in $B_d^0 \to J/\psi K^*$ decays, and are allowed to vary over a Gaussian width $\pi/5$
 \[
 \begin{align*}
 \delta_1 &= -0.46 \\
 \delta_2 &= 2.92 \\
 \end{align*}
 \]
 [arXiv:0704.3575]
Recent CPV Results from DØ

Decay Angles

DØ, 2.8 fb⁻¹

$B^0_s \to J/\psi \phi$

5.26 $< M(B^0_s) <$ 5.46 GeV

cτ/σ(ct) $>$ 5

Events per 0.10

- Data
- Total Fit
- CP-even
- CP-odd
- Total Signal
- Background

DØ, 2.8 fb⁻¹

$B^0_s \to J/\psi \phi$

5.26 $< M(B^0_s) <$ 5.46 GeV

cτ/σ(ct) $>$ 5

Events per 0.17

- Data
- Total Fit
- Total Signal
- Background

DØ, 2.8 fb⁻¹

$B^0_s \to J/\psi \phi$

5.26 $< M(B^0_s) <$ 5.46 GeV

cτ/σ(ct) $>$ 5

Events per 0.10

- Data
- Total Fit
- Total Signal
- Background
Sakharov Conditions (1967)

1. Baryon number violation (proton decay)
2. C and CP discrete symmetry violation
3. Thermal non-equilibrium
Selection Cuts

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T of μ^+, μ^-</td>
<td>> 1.5 GeV/c</td>
</tr>
<tr>
<td>p_T of K^+, K^-</td>
<td>> 0.7 GeV/c</td>
</tr>
<tr>
<td>p_T of ϕ</td>
<td>> 1.5 GeV/c</td>
</tr>
<tr>
<td>p_T of B^0_s</td>
<td>> 6.0 GeV/c</td>
</tr>
<tr>
<td>J/ψ candidate mass</td>
<td>$2.9 < M(\mu^+, \mu^-) < 3.3$ GeV/c2</td>
</tr>
<tr>
<td>ϕ candidate mass</td>
<td>$1.01 < M(K^+, K^-) < 1.03$ GeV/c2</td>
</tr>
<tr>
<td>B^0_s candidate mass</td>
<td>$5.0 < M(\psi, \phi) < 5.8$ GeV/c2</td>
</tr>
<tr>
<td>Decay length error of B^0_s candidate</td>
<td>< 0.006 cm</td>
</tr>
<tr>
<td>SMT hits on track</td>
<td>> 1</td>
</tr>
<tr>
<td>χ^2 of B^0_s</td>
<td>< 30.0</td>
</tr>
</tbody>
</table>
Summary of Fit Results

<table>
<thead>
<tr>
<th></th>
<th>(f_{\text{sig}} (N_{\text{sig}}))</th>
<th>(0.0409 \pm 0.0013) (1967±65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3</td>
<td>(M, \sigma) (in MeV)</td>
<td>5361.4±1.0, 30.1±1.0</td>
</tr>
<tr>
<td>4</td>
<td>(\bar{\tau}) (in (\mu m))</td>
<td>456±17</td>
</tr>
<tr>
<td>5</td>
<td>(\Delta \Gamma) (in (ps^{-1}))</td>
<td>0.19±0.07</td>
</tr>
<tr>
<td>6, 7</td>
<td>(A_\perp(0),</td>
<td>A_0(0)</td>
</tr>
<tr>
<td>8, 9</td>
<td>(\delta_1, \delta_2)</td>
<td>-0.52±0.42, 3.17±0.39</td>
</tr>
<tr>
<td>10</td>
<td>(\phi_s)</td>
<td>-0.57^{+0.24}_{-0.30}</td>
</tr>
<tr>
<td>11</td>
<td>(\Delta M_s) (in (ps^{-1}))</td>
<td>(\equiv 17.77)</td>
</tr>
<tr>
<td>12</td>
<td>(S)</td>
<td>1.24±0.01</td>
</tr>
<tr>
<td>13, 14, 15</td>
<td>(a_{1p}, a_{1l}, a_{2l})</td>
<td>-0.06±0.03, -1.45±0.08, 0.68±0.11</td>
</tr>
<tr>
<td>16, 17, 18</td>
<td>(f_-, f_+, f_{++})</td>
<td>0.049±0.004, 0.155±0.004, 0.035±0.003</td>
</tr>
<tr>
<td>19, 20, 21</td>
<td>(b_-, b_+, b_{++}) (in (\mu m))</td>
<td>65±3, 88±3, 399±21</td>
</tr>
<tr>
<td>22, 23</td>
<td>(X_{2p}, X_{4p})</td>
<td>0.85±0.09, -0.60±0.09</td>
</tr>
<tr>
<td>24, 25</td>
<td>(X_{2l}, X_{4l})</td>
<td>0.39±0.17, -0.23±0.19</td>
</tr>
<tr>
<td>26, 27</td>
<td>(Y_{1p}, Y_{2p})</td>
<td>-0.23±0.01, -0.10±0.02</td>
</tr>
<tr>
<td>28, 29</td>
<td>(Y_{1l}, Y_{2l})</td>
<td>-0.15±0.02, -0.00±0.04</td>
</tr>
<tr>
<td>30, 31</td>
<td>(Z_{2p}, Z_{2l})</td>
<td>0.05±0.02, 0.27±0.06</td>
</tr>
<tr>
<td>31, 32</td>
<td>(\text{Int}_p, \text{Int}_l)</td>
<td>-0.011±0.003, -0.018±0.001</td>
</tr>
</tbody>
</table>
Flavor Tagging: Dilution

Dilution of combined flavor tagging in simulated and real $B^\pm \to J/\psi K^\pm$ events for different values of the $|d|$ variable. All uncertainties are statistical.

| $|d|$ | $\mathcal{D}(B^\pm \to J/\psi K^\pm)$ (%) (MC) | $\mathcal{D}(B^\pm \to J/\psi K^\pm)$ (%) (data) |
|-----|--------------------------------|--------------------------------|
| 0.00 < $|d|$ < 0.10 | 0.029 ± 0.014 | 0.024 ± 0.017 |
| 0.10 < $|d|$ < 0.20 | 0.127 ± 0.015 | 0.154 ± 0.019 |
| 0.20 < $|d|$ < 0.35 | 0.261 ± 0.015 | 0.275 ± 0.018 |
| 0.35 < $|d|$ < 0.45 | 0.302 ± 0.028 | 0.397 ± 0.032 |
| 0.45 < $|d|$ < 0.60 | 0.483 ± 0.038 | 0.545 ± 0.049 |
| 0.60 < $|d|$ < 1.00 | 0.544 ± 0.045 | 0.573 ± 0.055 |

$|\mathcal{D}| = 0.7895 \cdot |d| + 0.3390 \cdot d^2$ if $|d| < 0.55$

$|\mathcal{D}| = 0.5957$ if $|d| > 0.55$.

The mass of the B^0_s candidates with $\mathcal{D} > 0$ (points) and $\mathcal{D} < 0$ (line).
Comparison to Other Experimental Results

DØ PRL 101 241801 (2008):

Updated CDF Result (2.8 fb\(^{-1}\))

Allowed range at the 90% CL:

\[\phi_s \in [-1.20, 0.06] \text{ rad} \]

1.7\(\sigma\) disagreement with SM

Deviation seen in same direction!

Allowed range at the 68% CL:

\[\phi_s = -2\beta_s \in [-1.29, -0.28] \text{ rad} \]

1.8\(\sigma\) disagreement with SM