Search for New Physics Contamination in the Top Quark Samples and Measurements of the Wtb Coupling at DØ

Shabnam Jabeen
Boston University
For the D0 Collaboration

SUSY 09, the 17th International Conference on Supersymmetry and the Unification of Fundamental Interactions,
Northeastern University, Boston
Outline

- Introduction
 - why look at top?
- Search for scalar top quarks
- Search for associated ttH production
- Anomalous Wtb couplings
 - Top quark pair production
 - Single top quark production
Why Look at The Top Quark?

• Was discovered at Fermilab in 1995

• The heaviest known fundamental particle
 – \(m_t = 173.1 \pm 1.3 \text{ GeV} \) (~0.75% precision)
 – \(\tau = 5 \times 10^{-25} \text{ s} \ll \Lambda_{QCD}^{-1} \) Decays before hadronization

• Mass close to scale of electroweak symmetry breaking
 – Only quark for which coupling to Higgs is significant
 – May shed light on EWSB mechanism

• Top quark plays special role in many of the new physics models

• Even more than a decade after its discovery, our sample consists of ~ 1000 top quark events
 – Many of the measurements of top quark properties are still statistics limited
Our Tools

- ~ 20 countries
- ~ 80 institutions
- ~ 700 enthusiastic physicists per experiment

The Tevatron Accelerator

The DØ Detector

Shabnam Jabeen (Boston University)
Top Quark at the Tevatron

Production

Top quark pair production

\[\sigma_{tt} \approx 7 \text{ pb} \]

Single Top quark production

- **t-channel**
 \[\sigma \approx 2 \text{ pb} \]

- **s-channel**
 \[\sigma \approx 1 \text{ pb} \]

Decay

Within Standard Model $t \rightarrow Wb \approx 100\%$

Top Pair Branching Fractions

- "alljets" 46%
- \(\tau + \text{jets} \) 15%
- \(\mu + \text{jets} \) 15%
- "dileptons" 2%
- "lepton+jets" 2%
- MET 1%
- (BR=46%, huge bckg)
- (BR=5%, low bckg)
- (BR=30%, moderate bckg)
• Dominant Backgrounds
 – Dominant backgrounds arise from W+jets and multijet production (ℓ+jets channel) and Z+jets WW+jets (dilepton channel)
 – When searching for new physics in top sector, SM top quark production itself becomes the dominant background

• Signal and Background Modeling
 – The SM top pair samples are generated with ALPGEN for the matrix elements and parton showers followed by PYTHIA for the hadronization
 – Single top quarks production is modeled using SINGLETOP based on COMPHEP
 – Other backgrounds are also modeled using ALPGEN or PYTHIA except multijet background which is determined from data
General Selection

- For lepton + jets channel require one isolated electron or muon, 3 or more jets and missing energy.

- Since top quark decay final states include jets originating from b quarks and most of the background doesn’t, we make use of b-tagging algorithm to further reduce our background contributions.

- Events are divided into sub-samples depending on lepton, jets and b-tags.

- These channels are kept separate and are combined at the end to get the final result.
 - All channels are constructed to be orthogonal.

Selection in l+jets channel:

- For electrons:
 - $p_T > 20 \text{ GeV}, |\eta| < 1.1$
- For muons:
 - $p_T > 20 \text{ GeV}, |\eta| < 2.0$
- Missing E_T:
 - $e: > 20 \text{ GeV}; \mu: > 25 \text{ GeV}$
- Jets:
 - $\geq 3 \text{ jets}$
 - $p_T > 20 \text{ GeV}, |\eta| < 2.5$
 - $p_{T,1} > 40 \text{ GeV}$
Search for Scalar Top Quark

The expected next-to-leading-order (NLO) cross section at a center of mass energy of 1.96 TeV for a mass equal to 175 GeV is:

- ~1 pb for scalar top quark
- ~7 pb for SM top quark

For this analysis we assume stop mass smaller than the top quark and $B(\tilde{\ell}_1 \rightarrow \tilde{\chi}_1^0 b) = 1$

The $\tilde{t}\tilde{t}$ event signatures can be very similar to tt possible hidden admixture!
Search for Scalar Top Quark

- Exploit kinematic differences to distinguish stop from SM background
- Build a likelihood discriminant to distinguish signal from the background

Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W+jets Backgnd Modeling</td>
<td>24-74%</td>
</tr>
<tr>
<td>Theoretical x-section</td>
<td>13-20%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>6-30%</td>
</tr>
<tr>
<td>b-tagging</td>
<td>.1-27%</td>
</tr>
</tbody>
</table>

SUSY09@Northeastern

Shabnam Jabeen (Boston University)
Results

- The observed cross section limits are a factor of 2−13 larger than the theory prediction and agree with the expected limits within uncertainties.
t\bar{t}H Production at DØ

- Could be enhanced in BSM scenarios such as 2HDMs (MSSM)
- Any new physics (e.g. G' --> t t' H) could show up independent from SM associated Higgs production

- Spectacular signature
- This is the first time we are looking at 5 or more jets with 3 or more b-jets separately events

- Contributes to overall sensitivity (at low masses)
- Interesting at LHC

\[\mathcal{L} = 2.1 \text{ fb}^{-1} \]
we use differences in final state, number of jets, number b-jets and kinematical difference to separate signal from background:

<table>
<thead>
<tr>
<th>Source Values</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Backgnd Modeling</td>
<td>15.0%</td>
</tr>
<tr>
<td>Uncertainty on tt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Uncertainty on ttbb</td>
<td>50.0%</td>
</tr>
</tbody>
</table>
\[t\bar{t}H \rightarrow t\bar{t}b\bar{b} \]

Sheer Beauty

\[\mathcal{L} = 2.1 \text{ fb}^{-1} \]

\[\mu+\text{jet event with 3 } b\text{-tags and 5 jets.} \]

Shabnam Jabeen (Boston University)

SUSY09@Northeastern
Results

- Set 95% CL upper limit on the $t\bar{t}H$ cross section times branching ratio

- Limits strongly depend on the mass of the Higgs boson

- An alternative method: simultaneous fitting of the top quark pair production and the $t\bar{t}H$ cross section
 - No reliance of the event kinematics only on the difference in jet and b-tag multiplicity between signal and background.
 - A sub-dataset of 1 fb$^{-1}$ is used for this study
Using $t\bar{t}H$ Search to Look for t'

- Associated Higgs production in top pair events can be used to explore a model that includes both a G' boson and a t' quark.

Measurement of $|V_{tb}|$

- Under the assumption of unitarity and three generations of quarks: $|V_{tb}| = 0.9991(00)$

$$R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$$

- Can measure the branching ratio by counting the rate of b-tags in $t\bar{t}b$ar events

$R = 0.97^{+0.09}_{-0.08} (\text{stat + syst})$

$|V_{tb}| > 0.89$ @ 95% C.L.

[hep-ex/08011326 (2008)]
Anomalous Wtb Coupling

• If top quark plays a special role in EWSB its couplings to W bosons may differ from predictions
• Modifications to top quark interactions, in particular with weak gauge bosons, could yield the first signs of new physics

Most general CP-conserving Wtb vertex up to mass dimensions 5

\[L_{tWb} = \frac{g}{\sqrt{2}} W_\mu^- b \gamma^\mu \left(f_1^L P_L + f_1^R P_R \right) t - \frac{g}{\sqrt{2} M_W} \partial_\nu W_\mu^- b \sigma^{\mu\nu} \left(f_2^L P_L + f_2^R P_R \right) t + h.c. \]

where, in the SM \(f_1^L \approx 1, f_2^L = f_1^R = f_2^R = 0 \)

• Probing tWb vertex:

Both measurements can be combined to fully specify the tbW vertex (Phys. Lett. B 631, 126 (2005))
Model-independent measurement of the W boson helicity from $t \rightarrow Wb$ decays in top pair production

- A different Lorentz structure of the $t \rightarrow Wb$ interaction would alter the fractions of W bosons produced in each polarization state from the SM.

- Model-independent measurement based on reconstruction of $\cos \theta^*$ distribution. Distribution of $\cos \theta^*$ depends on the W boson helicity fractions.

- Generate samples corresponding to each of the three W boson helicity states by reweighting the generated $\cos \theta^*$ distributions.

- Simultaneous measurement of f_0 and f_+ (the negative helicity fraction f_- is then fixed by the requirement that $f_- + f_0 + f_+ = 1$).
Measuring W Boson Helicity

- Use a maximum likelihood fit, for the data to be consistent with the sum of signal and background in the $\cos\theta^*$ distribution

- The fit parameters are the W helicity fractions f_0 and f_+

- Get the W helicity fractions from the best fit
Results

- A model-independent measurement of the helicity of W bosons in top pair production

\[
\begin{align*}
 f_0 &= 0.490 \pm 0.106 \text{ (stat.)} \pm 0.085 \text{ (syst.)} \\
 f_+ &= 0.110 \pm 0.059 \text{ (stat.)} \pm 0.052 \text{ (syst.)}
\end{align*}
\]

- if \(f_0 \) constrained to the standard model value

\[
 f_+ = 0.019 \pm 0.031 \text{ (stat.)} \pm 0.047 \text{ (syst.)}
\]

This is the most precise such measurement

Main source uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>(f_+)</th>
<th>(f_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttbar Modeling</td>
<td>0.028</td>
<td>0.055</td>
</tr>
<tr>
<td>Back. Modeling</td>
<td>0.026</td>
<td>0.039</td>
</tr>
<tr>
<td>Jet Energy Scale</td>
<td>0.019</td>
<td>0.029</td>
</tr>
</tbody>
</table>
Anomalous couplings in Single top Production

- Most general CP-conserving Wtb vertex up to mass dimension 5 involves four couplings
 - Left and Right handed Vector(1) couplings
 - Left and Right handed Tensor(2) couplings

$$L_{Wb} = \frac{g}{\sqrt{2}} W^- b \gamma^\mu \left(f_1^L P_L + f_1^R P_R \right) t - \frac{g}{\sqrt{2} M_W} \partial_\nu W^- b \sigma^{\mu\nu} \left(f_2^L P_L + f_2^R P_R \right) t$$

where, in the SM \(f_1^L \approx 1, f_2^L = f_1^R = f_2^R = 0 \)
Limit Setting

- Bayesian approach for limit setting
- Simultaneous limit setting for two signals by calculating 2 dimensional posterior probability density

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Cross Section</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1, L_2)</td>
<td>$4.4^{+2.3}_{-2.5} \text{ pb}$</td>
<td>$</td>
</tr>
<tr>
<td>(L_1, R_1)</td>
<td>$5.2^{+2.6}_{-3.5} \text{ pb}$</td>
<td>$</td>
</tr>
<tr>
<td>(L_1, R_2)</td>
<td>$4.5^{+2.2}_{-2.2} \text{ pb}$</td>
<td>$</td>
</tr>
</tbody>
</table>

First experimental limits on tensor couplings!
(PRL 101, 221801 (2008))
Combining W Helicity and Anom. Wtb Couplings

• General Analysis of Single Top Production and W Helicity in Top Decay
 (PLB 631, 126 (2005))

• Combine W helicity measurement in top pair decays
 with

• Anomalous couplings measurement in single top (PRL 101, 221801 (2008))

\[f_{0,\text{meas}} - f_0 \left(f_1^L, f_2^L, f_1^R, f_2^R \right) \]
\[f_{+,\text{meas}} - f_+ \left(f_1^L, f_2^L, f_1^R, f_2^R \right) \]
\[\Delta \sigma_{s,\text{meas}} - \Delta \sigma_s \left(f_1^L, f_2^L, f_1^R, f_2^R \right) \]
\[\Delta \sigma_{t,\text{meas}} - \Delta \sigma_t \left(f_1^L, f_2^L, f_1^R, f_2^R \right) \]
Observed posterior from the data for single top

Observed posterior from the data for single top and W helicity combined

SUSY09@Northeastern

Shabnam Jabeen (Boston University)
Conclusion and Outlook

• I have shown only a small subset of a large and diverse top program to search new physics at D0
• Analyses are becoming increasingly exciting:
 – Ever increasing statistics – more phase space
 – Multiple interpretations – can exclude many models at the same time
• A lot more data to come!!!

We may not have to wait for the LHC in order to be surprised
Conclusion and Outlook

• I have shown only a small subset of a large and diverse top program to search new physics at D0
• Analyses are becoming increasingly exciting:
 – Ever increasing statistics – more phase space
 – Multiple interpretations – can exclude many models at the same time
• A lot more data to come!!!

We may not have to wait for the LHC in order to be surprised