Search for dilepton and lepton+$E_{T\text{miss}}$ resonances at high mass with ATLAS

Elizabeth Castaneda-Miranda on behalf of the ATLAS Collaboration
SUSY09, Boston, USA
June 5-10, 2009
Motivation

- The unification of fundamental interactions as well as some SM deficiencies have motivated the introduction of extended gauge symmetries, featured by several possible extensions of the SM:
 - GUTs
 - Superstring-inspired E6 models
 - Kaluza-Klein model
 - etc...
- Z' and W' are the generic names of the new heavy gauge bosons introduced in those extensions
- ATLAS has studied the dilepton and lepton+$E_{T\text{miss}}$ signatures to search for these particles
ATLAS Detector

- High energy electrons are detected by LAr calorimeter, and identified using shower shapes, track matching, etc...
 - See talk by O. Arnaez

- Muons are detected by the Muon System, and their momenta obtained by a combination with the Inner Detector information
 - See talk by D. Lopez Mateos

- Expected electron energy resolution is
 - ~0.6% for E=500GeV
 - ~0.5% for E=1000GeV

- Muon transverse momentum (p_T) resolution is:
 - ~6% for $p_T=500GeV$
 - ~11% for $p_T=1000GeV$
Dileptons
Introduction

- The dominant Z' production process is $q\bar{q} \rightarrow Z'$
- The neutral gauge bosons are produced via the Drell-Yan process: $pp \rightarrow Z' \rightarrow l^+l^- (l=e, \mu)$, clean signature
- The differential cross-section for the lepton-pair production depends on:
 - Center of mass energy ($\sqrt{s'}$)
 - Z' couplings
 - Z' Invariant mass M, its rapidity y
 - The c.m. angle θ^*
- If a Z' is discovered we will be able to measure:
 - Its mass $M_{Z'}$, decay width $\Gamma_{Z'}$
 - The total cross-section $\sigma_{Z'}$
 - Its spin and its branching ratios

\[\frac{d\sigma}{dMdyd(\cos\theta^*)} = \frac{Mx_Ax_B}{48\pi} \left[\sum_q \left[f_q^A(x_A)f_{\bar{q}}^B(x_B) + f_q^A(x_A)f_{\bar{q}}^B(x_B) \right] S_q(1 + \cos^2\theta^*) \right. \]
\[\left. + \sum_q \left[f_q^A(x_A)f_{\bar{q}}^B(x_B) - f_q^A(x_A)f_{\bar{q}}^B(x_B) \right] 2A_q \cos\theta^* \right] \]

- S_q and A_q symmetric and antisymmetric contributions to the cross-section in $\cos\theta^*$ (θ^* is the c.m. angle between negative lepton with respect to the quark direction)
- f^A and f^B are parton densities depending on the momentum fractions of the quarks

Lepton Identification

- Efficiency of electron identification at 1 TeV $Z' \rightarrow e^+e^-$ for clusters with $p_T > 50$ GeV and $|\eta| < 2.5$
 - loose selection: very high efficiency (~80%)
 - medium selection: better rejections against neutral pions (~63%)

- Muon reconstruction efficiency at 1 TeV Z' is (95 ± 0.2)% requiring $p_T > 30$ GeV and $|\eta| < 2.5$
Backgrounds

- Background contribution before and after the selection criteria to the e^+e^- invariant mass:
 - $|\eta|<2.5$, at least 1 electron with $p_T>65\text{GeV}$
 - Rejection factor $R_{e\text{-jet}}=10^4$($R_{e\text{-}\gamma}=10$) was applied for each electron-candidate leg from jet (photon)

- The rejection factors in the case of muons are higher than the electrons and the reducible backgrounds are lower

- After selection, Drell-Yan is the main background
Several benchmark $Z'\rightarrow l^+l^-$ models have been analyzed in ATLAS.

- Electron channel:
 - Two "loose" electrons with $|\eta|<2.5$ and at least one electron with $p_T>65\text{GeV}$
 - Event triggered, opposite charges
 - K-factor ≈ 1.26 is applying to signal and Drell-Yan background as well.
 - Uncertainties: energy resolution (5% effect on the luminosity for 5σ) and electron energy scale (2.5%)

- Muon channel:
 - Two combined muons (inner detector and muon spectrometer), at least one with $p_T>30\text{GeV}$ and $|\eta|<2.5$
 - Event triggered, opposite charges
 - Main uncertainty comes from misalignment of the muon spectrometer (5%)

- Theoretical uncertainties (Renormalization/factorization scales, PDF's, non perturbative form factor): $\pm 8.5\%$ at $1\text{TeV} \ Z'$ and $\pm 14\%$ at $3\text{TeV} \ Z'$
$Z' \rightarrow \tau\tau$

- $Z' \rightarrow \tau\tau$ combining all 3 final states: hadron-hadron, lepton-hadron and lepton-lepton
 - Events selected using a combined tau and missing E_T trigger
 - Collinear approximation: $m_{\text{col}} = m_{\tau\tau}^{\text{vis}} / (x_{\tau_1} \cdot x_{\tau_2})^{\frac{1}{2}}$
 - $m_{\tau\tau}^{\text{vis}}$: inv. mass of the 2 tau visible decay products
 - x_{τ_1} and x_{τ_2} are the fractions of the tau momenta carried by the visible decay daughters
 - Backgrounds: Drell-Yan, Z+jets, ttbar and QCD
If a high-mass dilepton resonance is discovered, then we will be able to measure its spin in order to distinguish if it is a Z' (spin 1) or Graviton (spin 2).

- 1TeV graviton and coupling constant $k/M_{pl} = 0.02$ (k curvature scale)
 - $p_T > 65\text{GeV}$, back-to-back loose electrons, no charge requirement
 - K-factors $\simeq 1.6$ is taking into account for both signal and Drell-Yan background
 - Drell-Yan Background fitted by exponential function
ATLAS Discovery potential at 14TeV

- 5σ luminosities for the Z' models in the electron channel as a function of its true mass:

 - Less than 100pb$^{-1}$ are needed to discover a 1TeV Z'

- Systematic uncertainties included for Z'_{χ}

CDF exclusion limits at 95% C.L. on Z' Sequential Standard Model (SSM) in electron channel:

$$M_{Z'}^{(SSM)} < 966\text{GeV}, \text{ arXiv: hep-ph/0810.2059v2}$$
ATLAS Discovery potential at 14TeV

- The 1-CL$_b$ as a function of int. luminosity for 1TeV Z$'_\text{SSM}$ in the muon channel:
 - 5σ luminosity between 15pb$^{-1}$ and 25pb$^{-1}$

- Largest systematic uncertainty: misalignment of the muon spectrometer

- The significance as a function of int. luminosity for 3TeV Z$'_\text{SSM}$ $\rightarrow \mu^+\mu^-$
 - With a 3.4 fb$^{-1}$ ATLAS can reach 3TeV Z$'$

CDF is excluding Z$'_\text{SSM}$ $\rightarrow \mu^+\mu^-$ masses below 1030GeV, arXiv: hep-ph/0811.0053v1
ATLAS Discovery potential at 14TeV

- The Z' in tau channel, the luminosity required for 3σ evidence or 5σ discovery (combining all the channels) as a function of the true Z' mass including 20% of uncertainty
 - The most dominant systematic uncertainties on the signal are coming from the uncertainty on the luminosity (±18%) and the second is the hadronic tau energy scale (the lowest mass energy is affected by ±10%)
 - With 100pb⁻¹ ATLAS could observe it in a relatively low mass region
The 5σ discovery and 3σ evidence reach in cross-section and k/M_{Pl} coupling constant as a function of graviton mass.

With $1fb^{-1}$ of data, a graviton with $900GeV$ and $k/M_{Pl}=0.01$ can be discovered.

- Systematic uncertainties (luminosity, energy scale, energy resolution, electron identification efficiency and Drell-Yan background uncertainties): between ±10% and 15%
Lepton + Etmiss
Introduction

- Right-handed charged heavy boson corresponds to a symmetry spontaneously broken down to the left-right symmetry

- The differential cross-section of W' depends on:
 - Center of mass energy (\sqrt{s})
 - Its couplings, its mass
 - Its rapidity and c.m. angle θ

- The observation of the W' is based on the detection of an excess of a single lepton at high p_T above background, with a sharp upper edge (transverse mass)

\[
\frac{d\sigma}{d\tau dy dz} = K \frac{G_F^2 M_W^4}{48\pi} \sum_{qq'} |V_{qq'}|^2 \left[S G_{qq'}^+ (1 + z^2) + 2 A G_{qq'}^- z \right]
\]

T. G. Rizzo, JHEP 0705 (2007)

- The coupling strengths for leptons and quarks, the helicity factors and the square of the total collision energy are implicitly in S and A
- $V_{qq'}$ is the CKM(unit) matrix; $q(q')$ is a $u(d)$-type quark
- $G_{qq'}^{\pm}$ are the combinations of the parton distribution functions.
- z in the $\cos\theta$, the scattering angle in the c.m. frame defined as that between the incoming u-type quark and the outgoing neutrino.
- $\tau = M^2/s$, where M^2 lepton-pair invariant mass and $\sqrt{s}=cme$
Muon Reconstruction

- Efficiency of the muon reconstruction as a function of p_T from fully simulated W'
 - 93.6% is the reconstruction efficiency for 1TeV W' and 92.4% for 2TeV W'
 - Systematic errors on the momentum scale of the muons can arise for instance due to the non-perfect knowledge of the magnetic field, to take into account such effect, a variation of $\pm 1\%$ is applied to the p_T of the reconstructed

CERN-OPEN-2008-020
Missing Energy Resolution

- Since the final state of the W' includes a neutrino, it is necessary to understand the Missing Transverse Energy (MET)

- The (average) resolutions of MET for 1TeV and 2TeV W' events that contain one high p_T muon are 18GeV and 25GeV, respectively

- For the electron-neutrino case, 10GeV for 1TeV W' and 14GeV for 2TeV W'

\[W'\rightarrow \mu \nu \]

\[W'\rightarrow e\nu \]
Transverse Mass

\[m_T = \sqrt{2p_T E_T (1 - \cos(\Delta \phi_l, E_T))} \]

- **Event selection:**
 - Preselection: \(p_T > 50 \text{GeV}, |\eta| < 2.5 \) and MET > 50 GeV
 - Isolation:
 - Tracking: Sum \(p_T \) track in \(\Delta R \) cone around the lepton
 - Lepton fraction: fraction of the energy that can be attributed to leptons in an event

- **Systematic uncertainties:**
 - Theoretical uncertainties (Renormalization/factorization scales and PDF's): ±8% uncertainty on K-factor (1.37) for all true W' masses
 - Experimental uncertainties (lepton reconstruction, jet reconstruction and missing energy): ±3% the luminosity for 5σ is affected for 1TeV W' in electron and muon channel

CERN-OPEN-2008-020
ATLAS discovery potential at 14TeV

- Integrated luminosity needed to have a 5σ discovery as a function of the W' mass
- With 10pb$^{-1}$ of data in ATLAS it would be possible to discover this type of boson if its mass is not far above the current limit
- With 1fb$^{-1}$, a 3TeV W' can be reached in ATLAS

\textbf{CERN-OPEN-2008-020}

\textit{D0 is excluding at 95\%C.L. $W'_{SSM} \rightarrow ev$ masses below 1TeV,}

\textit{The D0 Collaboration, Phys. Rev. Lett. 100, (2008)}
Summary

- The data in LHC is coming soon and ATLAS is ready to explore and discover the new physics behind it.
- In this talk we presented the discovery potential of searches for dilepton and lepton+Jetmiss signatures.
- Several values of the masses for new particles from benchmark models were studied.
- Particles predicted in several models would be within reach for luminosities as low as O(10/pb). LHC is expected to deliver 200-300pb\(^1\) at 10TeV in 2010.
BACKUP
Z': Estimation from the theorists

- 5σ discovery as a function of the integrated luminosity for Z' models at 10TeV LHC center of mass energy:

CDF Limits

CDF Limits

- Present limits on Z' Sequential Standard Model (SSM) searches at 95% C.L.:
 - $Z'\rightarrow\mu^+\mu^-$: $M_{Z'(SSM)}>1030\text{GeV}$ \textit{arXiv:hep-ph/0811.0053v1}
$Z'_\chi \rightarrow ee$

- Integrated luminosity needed for a 5σ discovery combining all systematic uncertainties that we have mentioned

Figure: Integrated luminosity (L) in units of fb^{-1} as a function of the mass ($M_{Z'}$) in GeV. The green line represents the systematic uncertainty, while the red line indicates the expected signal. The data is from the ATLAS experiment. The graph shows a logarithmic scale for both the luminosity and the mass, with a linear increase in luminosity with mass.
Z’: Results

Z’->e^+e^- analysis: Cross-section in fb^{-1}

<table>
<thead>
<tr>
<th>Selection</th>
<th>Signal at 1 TeV</th>
<th>DY at 1 TeV</th>
<th>Signal at 2 TeV</th>
<th>DY at 2 TeV</th>
<th>Signal at 3 TeV</th>
<th>DY at 3 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 generated e^\pm,</td>
<td>\eta</td>
<td>< 2.5</td>
<td>347.</td>
<td>3.56</td>
<td>14.7</td>
<td>0.16</td>
</tr>
<tr>
<td>2 clusters with a track</td>
<td>201.</td>
<td>2.06</td>
<td>8.0</td>
<td>0.09</td>
<td>0.62</td>
<td>0.009</td>
</tr>
<tr>
<td>2 loose electrons</td>
<td>190.</td>
<td>1.96</td>
<td>7.2</td>
<td>0.08</td>
<td>0.52</td>
<td>0.008</td>
</tr>
<tr>
<td>At least one $p_T > 65$ GeV</td>
<td>190.</td>
<td>1.96</td>
<td>7.2</td>
<td>0.08</td>
<td>0.52</td>
<td>0.008</td>
</tr>
<tr>
<td>Event triggered</td>
<td>173.</td>
<td>1.77</td>
<td>6.6</td>
<td>0.07</td>
<td>0.47</td>
<td>0.007</td>
</tr>
<tr>
<td>2 opposite charges</td>
<td>166.</td>
<td>1.70</td>
<td>6.2</td>
<td>0.07</td>
<td>0.43</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Z’->μ^+μ^- analysis: Cross-section in fb^{-1}

<table>
<thead>
<tr>
<th>Sample</th>
<th>Z_SSM (1 TeV)</th>
<th>Z_X (1 TeV)</th>
<th>Drell-Yan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generated</td>
<td>508.6</td>
<td>380.6</td>
<td>13.5</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>\leq 2.5$</td>
<td>366.8</td>
</tr>
<tr>
<td>$p_T \geq 30$ GeV</td>
<td>364.0</td>
<td>270.1</td>
<td>10.7</td>
</tr>
<tr>
<td>Muon identification</td>
<td>342.3</td>
<td>256.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Trigger</td>
<td>325.2</td>
<td>243.2</td>
<td>9.5</td>
</tr>
<tr>
<td>Opposite charge</td>
<td>324.8</td>
<td>243.0</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Graviton

G→ee: natural width (Γ_G), Gaussian width after detector effects (σ_m) and leading order cross-section.

<table>
<thead>
<tr>
<th>Model Parameters</th>
<th>Γ_G [GeV]</th>
<th>σ_m [GeV]</th>
<th>$\sigma \cdot BR(G \rightarrow e^+e^-)$ [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_G 500 GeV</td>
<td>0.08</td>
<td>4.6</td>
<td>187.4</td>
</tr>
<tr>
<td>m_G 750 GeV</td>
<td>0.10</td>
<td>6.4</td>
<td>27.7</td>
</tr>
<tr>
<td>m_G 1.0 TeV</td>
<td>0.57</td>
<td>7.9</td>
<td>26.0</td>
</tr>
<tr>
<td>m_G 1.2 TeV</td>
<td>1.62</td>
<td>10.3</td>
<td>22.4</td>
</tr>
<tr>
<td>m_G 1.3 TeV</td>
<td>2.98</td>
<td>11.4</td>
<td>25.3</td>
</tr>
<tr>
<td>m_G 1.4 TeV</td>
<td>5.02</td>
<td>13.1</td>
<td>26.8</td>
</tr>
</tbody>
</table>

CERN-OPEN-2008-020
Z': NLO Corrections

- NLO electroweak corrections in the high-mass region for Standard Model electron and muon pair production at the LHC

- Mass (left) and transverse-momentum (right) spectra after matching the NLO corrections to join resummation with CTQ6M (full) and MRST 2004 NLO (dashed) parton densities
W'->e\nu: D0 Limits

- Limits at 95% C.L. on W' search:
 - D0: $M_{W'}^{SSM} > 1$TeV, *The D0 Collaboration, Phys. Rev. Lett. 100, (2008)*

\[
\sigma_{W'} \times B(W' \rightarrow e\nu) [fb] \text{ at 95% CL}
\]

D0, 1 fb$^{-1}$
MC samples used for \(W' \) analysis at 14TeV

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>(\sigma \times BR) [fb]</th>
<th>Comments</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TeV (W' \to \ell \nu)</td>
<td>PYTHIA</td>
<td>9430</td>
<td>(\sqrt{s'} > 300) GeV</td>
<td>30K</td>
</tr>
<tr>
<td>2 TeV (W' \to \ell \nu)</td>
<td>PYTHIA</td>
<td>437</td>
<td>(\sqrt{s'} > 300) GeV</td>
<td>30K</td>
</tr>
<tr>
<td>3 TeV (W' \to \ell \nu)</td>
<td>PYTHIA</td>
<td>54</td>
<td>(\sqrt{s'} > 300) GeV</td>
<td>10K</td>
</tr>
<tr>
<td>Standard Model (W \to \ell \nu)</td>
<td>PYTHIA</td>
<td>18721.1</td>
<td>200 GeV < (m_W) < 500 GeV</td>
<td>20K</td>
</tr>
<tr>
<td>Standard Model (W \to \ell \nu)</td>
<td>PYTHIA</td>
<td>708.26</td>
<td>(m_W > 500) GeV</td>
<td>20K</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>MC@NLO</td>
<td>452000</td>
<td></td>
<td>340K</td>
</tr>
<tr>
<td>Dijet J0</td>
<td>PYTHIA</td>
<td>(1.76 \times 10^{13})</td>
<td>(p_T = 8) – (17) GeV</td>
<td>380K</td>
</tr>
<tr>
<td>Dijet J1</td>
<td>PYTHIA</td>
<td>(1.38 \times 10^{12})</td>
<td>(p_T = 17) – (35) GeV</td>
<td>380K</td>
</tr>
<tr>
<td>Dijet J2</td>
<td>PYTHIA</td>
<td>(9.33 \times 10^{10})</td>
<td>(p_T = 35) – (70) GeV</td>
<td>390K</td>
</tr>
<tr>
<td>Dijet J3</td>
<td>PYTHIA</td>
<td>(5.88 \times 10^{9})</td>
<td>(p_T = 70) – (140) GeV</td>
<td>380K</td>
</tr>
<tr>
<td>Dijet J4</td>
<td>PYTHIA</td>
<td>(3.08 \times 10^{8})</td>
<td>(p_T = 140) – (280) GeV</td>
<td>390K</td>
</tr>
<tr>
<td>Dijet J5</td>
<td>PYTHIA</td>
<td>(1.25 \times 10^{7})</td>
<td>(p_T = 280) – (560) GeV</td>
<td>370K</td>
</tr>
<tr>
<td>Dijet J6</td>
<td>PYTHIA</td>
<td>(3.60 \times 10^{5})</td>
<td>(p_T = 560) – (1120) GeV</td>
<td>380K</td>
</tr>
<tr>
<td>Dijet J7</td>
<td>PYTHIA</td>
<td>(5.71 \times 10^{3})</td>
<td>(p_T = 1120) – (2240) GeV</td>
<td>430K</td>
</tr>
</tbody>
</table>
Cross-section for signal and background: electron mode

<table>
<thead>
<tr>
<th>Requirement</th>
<th>σ [pb]</th>
<th>W' (1 TeV)</th>
<th>W' (2 TeV)</th>
<th>W_{tail}</th>
<th>$\tilde{t}\tilde{t}$</th>
<th>Dijets[1-7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No requirement)</td>
<td>4.99</td>
<td>0.231</td>
<td>10.28</td>
<td>452</td>
<td>1.91×10^{10}</td>
<td></td>
</tr>
<tr>
<td>Preselection</td>
<td>3.67±0.04</td>
<td>0.160±0.002</td>
<td>6.80±0.06</td>
<td>150.57±0.40</td>
<td>$(13.6±0.2) \times 10^{6}$</td>
<td></td>
</tr>
<tr>
<td>$p_T > 50$ GeV</td>
<td>3.43±0.04</td>
<td>0.150±0.002</td>
<td>5.53±0.05</td>
<td>51.13±0.23</td>
<td>$(7.23±0.6) \times 10^{3}$</td>
<td></td>
</tr>
<tr>
<td>$\slashed{E}_T > 50$ GeV</td>
<td>3.40±0.04</td>
<td>0.149±0.002</td>
<td>5.19±0.05</td>
<td>25.78±0.16</td>
<td>45.33±16.65</td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>3.36±0.04</td>
<td>0.148±0.002</td>
<td>5.01±0.05</td>
<td>23.30±0.16</td>
<td>0.65±0.13</td>
<td></td>
</tr>
<tr>
<td>Lepton fraction</td>
<td>3.25±0.04</td>
<td>0.145±0.002</td>
<td>4.10±0.04</td>
<td>0.50±0.02</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$m_T > 700$ GeV</td>
<td>1.86±0.03</td>
<td>0.0317±0.0008</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$m_T > 1400$ GeV</td>
<td>0.0740±0.001</td>
<td>0.0014±0.0002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Cross-section for signal and background: muon mode

<table>
<thead>
<tr>
<th>Requirement</th>
<th>σ [pb]</th>
<th>W' (1 TeV)</th>
<th>W' (2 TeV)</th>
<th>W_{tail}</th>
<th>$\tilde{t}\tilde{t}$</th>
<th>Dijets[1-7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(No requirement)</td>
<td>4.99</td>
<td>0.231</td>
<td>10.28</td>
<td>452</td>
<td>1.91×10^{10}</td>
<td></td>
</tr>
<tr>
<td>Preselection</td>
<td>4.28±0.05</td>
<td>0.199±0.002</td>
<td>7.77±0.06</td>
<td>205.30±0.46</td>
<td>$(11.2±0.19) \times 10^{6}$</td>
<td></td>
</tr>
<tr>
<td>$p_T > 50$ GeV</td>
<td>4.03±0.04</td>
<td>0.187±0.002</td>
<td>6.40±0.06</td>
<td>61.71±0.25</td>
<td>$(1.24±0.26) \times 10^{3}$</td>
<td></td>
</tr>
<tr>
<td>$\slashed{E}_T > 50$ GeV</td>
<td>4.00±0.04</td>
<td>0.186±0.002</td>
<td>6.04±0.05</td>
<td>31.34±0.18</td>
<td>74.32±23.28</td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>3.95±0.04</td>
<td>0.185±0.002</td>
<td>5.99±0.05</td>
<td>28.70±0.17</td>
<td>1.00±0.82</td>
<td></td>
</tr>
<tr>
<td>Lepton fraction</td>
<td>3.81±0.04</td>
<td>0.181±0.002</td>
<td>4.85±0.05</td>
<td>0.64±0.03</td>
<td>$(1.96±1.38) \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>$m_T > 700$ GeV</td>
<td>2.20±0.03</td>
<td>0.043±0.002</td>
<td>0.007±0.003</td>
<td>0.001±0.001</td>
<td>0.001±0.001</td>
<td></td>
</tr>
<tr>
<td>$m_T > 1400$ GeV</td>
<td>0.094±0.0001</td>
<td>0.0031±0.0006</td>
<td>0.001±0.001</td>
<td>0.001±0.001</td>
<td>0.001±0.001</td>
<td></td>
</tr>
</tbody>
</table>
W': NLO Corrections

Integrated W' boson and W boson tail cross-section for Pythia and MC@NLO with common scale factor S=1. Integral is over the full η range $-2.5<\eta<2.5$. The listed K-factors are the ratios of the integrated MC@NLO and Pythia cross-sections. The last two columns give the change in the MC@NLO cross-section when the common scale factor is changed by a factor of two. The statistical error in the last digit of each calculated quantity is shown in parentheses.

![Cross-section table]

CERN-OPEN-2008-020