Search for new physics with long-lived particles

Christopher Marino, Indiana University
For the ATLAS Collaboration
SUSY09
June 6, 2009
Introduction

- Various models of new physics predict long-lived particles which travel a significant distance from the interaction point before decaying.

- Strategies capitalizing on the unique signatures improve triggering and reconstruction for such events at ATLAS.

- This talk will focus on Hidden Valley particles produced through Higgs decays.
Outline

- Hidden Valley Scenario
- Experimental Challenges
- ATLAS Trigger
- Decays within the Detector
 - Muon Spectrometer
 - Calorimeter
 - Inner Detector
- Status and Plans
Hidden Valley† Scenarios

- Beyond the Standard Model is a hidden sector (or v-sector) and a communicator interacts with both sectors
- A barrier “hides” the v-sector making production of v-particles rare at low energies
 - Communicator’s high mass
 - Weak couplings….
- Production of v-particles may be observable at the LHC
- Some v-particles may be stable (dark matter candidates) and others decay to Standard Model particles

†see:
Hidden Valley & Higgs Decays

Higgs decay to v-pions

- V-pion is neutral pseudo-scalar
 - Displaced decay mainly to bottom quark
- We use 2 samples to study trigger strategies for this process:
 - Ideal sample (signal only)
 - Signal with pileup
 - pileup for $L=10^{32}$ cm$^{-2}$ s$^{-1}$
 - 4.1 collisions/crossing
 - 450ns bunch spacing
- Parameters:
 - Higgs Mass = 140 GeV
 - π_v Mass= 40 GeV
 - π_v cτ = 1500 mm
- Events simulated using PYTHIA
- Work in collaboration with M. Strassler

see also:
Experimental Challenges

• Neutral states decaying far from the interaction point lead to challenges for the trigger
 ◦ Current ATLAS triggers center on particles originating from the Interaction Point

• Long-lived Hidden Valley particles will decay throughout the detector volume
 ◦ Depending on where the decay occurs different approaches are required

• We need special triggers for each the signature produced in each system
ATLAS Trigger

Christopher Marino, Indiana University
Decays within ATLAS Detector

Probability for πν from gg fusion to decay in each detector region vs cτ for |η|< 2.5 (Inner Detector coverage)
Decays in Muon Spectrometer

- Little or no energy deposited in the calorimeter
- Characterized by a large number of charged tracks and a cluster of muon Regions of Interest (RoIs)
- Only 1 muon reconstructed per muon RoI with standard trigger
Decays in Muon Spectrometer

- Define a new Level 2 trigger algorithm using these signatures as:
 - At least 3 muon Regions of Interest at Level 1
 - Isolation wrt jets and Inner Detector tracks
- >70% Efficient for decays in the barrel Muon Spectrometer
- >25% in the endcap region
Decays in the Hadronic Calorimeter

- Decays in the calorimeter produce very narrow jets
- No reconstructed tracks in the Inner Detector
- Large energy deposited in the Hadronic Calorimeter (HCAL)
- Little energy in the Electromagnetic Calorimeter (ECAL)
Decays in the Hadronic Calorimeter

- Narrow jet shape allows of use a Level-1 \(\tau \) trigger to select these decays
- We define a Level 2 trigger using these signatures as:
 - \(\log_{10}(E_{HCAL}/E_{ECAL}) > 1 \)
 - Isolation wrt Inner Detector tracks
Decays in the Inner Detector:

- Low efficiency for normal tracking algorithms
- Trigger on trackless jets containing muons

Level 2 jet trigger:

- \(E_T \geq 35 \text{GeV} \) in Electromagnetic Calorimeter (ECAL)
- No reconstructed tracks
- Seed with Level 1 muon

Absolute efficiency \(\sim 2\% \) (due to requiring the muon in the event)

Studies ongoing to define a more efficient trigger in the Inner Detector:

- Backtracking and vertex finding in ID
- Jet substructure in the ECAL
Status of Improvements

- **New L2Trigger Algorithms**
 - Cluster of Muon objects isolated from tracks and jets
 - L1 dimuon trigger
 - Narrow trackless jets with high hadronic/EM Energy
 - L1 tau trigger
 - Trackless EM jet with a muon
 - L1 muon & L1 jet triggers

- **Backgrounds**
 - None of 3M minbias events pass the triggers
 - Sample of 10 TeV di-jet events at $10^{32}\text{cm}^{-2}\text{s}^{-1}$ have less than 1 Hz combined L2 trigger rates
Related Searches

• Ongoing work using similar strategies for neutral long-lived particles decaying to lepton jets (Weiner et al., Lin-Tao et al.)

• Trigger and reconstruction improvements for charged stable massive particles in each part of ATLAS
 ◦ Muon system (see talk by Shlomit Tarem)
 ◦ Calorimeters (see talk by Philippe Mermod)
 ◦ Ongoing work on Inner Detector
Conclusions

- New signature-based triggers have been created to reconstruct long-lived neutral particles decaying in ATLAS
 - Improvement in overall Higgs to Hidden Valley event efficiency from ~2% to >20%

- Ongoing work on Inner Detector Decays and Event Filter trigger selection may contribute further improvements

- We are developing strategies to use ATLAS to search for neutral and charged massive long-lived particles in new physics models